[ Table of contents ]

Annex E
(normative)

ORM specifications

E.1 Introduction

This annex presents the specification of the standardized ORMs and associated RTs. If two or more object-fixed ORMs for the same object are specified then one of the ORMs is designated as the reference ORM for that object. Table E.1 in E.2.1 lists the reference ORMs specified in this International Standard, ordered alphabetically by their label. ORM specifications are listed in tables in E.2.2 according to object categories (abstract, Earth, other planet, satellites, and Sun) and binding type (object-fixed or dynamic). Table E.2  provides a directory of these tables. Parameter values in the tables are specified by value or by reference. Parameters specified by reference use the terminology in the cited references. Those terms are enclosed in brackets ( { } ). Referenced values in length units other than meters are converted to metres to specify the corresponding RT parameter.

E.2 ORMs

E.2.1     Reference ORMs

Table E.1Reference ORM directory

Object name

Type

Reference ORM label

2D modelling space

Abstract

ABSTRACT­_2D

3D modelling space

Abstract

ABSTRACT­_3D

Adrastea

Satellite

ADRASTEA­_2000

Amalthea

Satellite

AMALTHEA­_2000

Ariel

Satellite

ARIEL­_1988

Atlas

Satellite

ATLAS­_1988

Belinda

Satellite

BELINDA­_1988

Bianca

Satellite

BIANCA­_1988

Callisto

Satellite

CALLISTO­_2000

Calypso

Satellite

CALYPSO­_1988

Charon

Satellite

CHARON­_1991

Cordelia

Satellite

CORDELIA­_1988

Cressida

Satellite

CRESSIDA­_1988

Deimos

Satellite

DEIMOS­_1988

Desdemona

Satellite

DESDEMONA­_1988

Despina

Satellite

DESPINA­_1991

Dione

Satellite

DIONE­_1982

Earth

Earth

WGS­_1984

Enceladus

Satellite

ENCELADUS­_1994

Epimetheus

Satellite

EPIMETHEUS­_1988

Eros (asteroid 433)

Planet

EROS­_2000

Europa

Satellite

EUROPA­_2000

Galatea

Satellite

GALATEA­_1991

Ganymede

Satellite

GANYMEDE­_2000

Gaspra (asteroid 951)

Planet

GASPRA­_1991

Helene

Satellite

HELENE­_1992

Iapetus

Satellite

IAPETUS­_1988

Ida (asteroid 243)

Planet

IDA­_1991

Io

Satellite

IO­_2000

Janus

Satellite

JANUS­_1988

Juliet

Satellite

JULIET­_1988

Jupiter

Planet

JUPITER­_1988

Larissa

Satellite

LARISSA­_1991

Mars

Planet

MARS­_2000

Mercury

Planet

MERCURY­_1988

Metis

Satellite

METIS­_2000

Mimas

Satellite

MIMAS­_1994

Miranda

Satellite

MIRANDA­_1988

Moon

Satellite

MOON­_1991

Naiad

Satellite

NAIAD­_1991

Neptune

Planet

NEPTUNE­_1991

Oberon

Satellite

OBERON­_1988

Ophelia

Satellite

OPHELIA­_1988

Pan

Satellite

PAN­_1991

Pandora

Satellite

PANDORA­_1988

Phobos

Satellite

PHOBOS­_1988

Phoebe

Satellite

PHOEBE­_1988

Pluto

Planet

PLUTO­_1994

Portia

Satellite

PORTIA­_1988

Prometheus

Satellite

PROMETHEUS­_1988

Proteus

Satellite

PROTEUS­_1991

Puck

Satellite

PUCK­_1988

Rhea

Satellite

RHEA­_1988

Rosalind

Satellite

ROSALIND­_1988

Saturn

Planet

SATURN­_1988

Sun

Sun

SUN­_1992

Telesto

Satellite

TELESTO­_1988

Tethys

Satellite

TETHYS­_1991

Thalassa

Satellite

THALASSA­_1991

Thebe

Satellite

THEBE­_2000

Titan

Satellite

TITAN­_1982

Titania

Satellite

TITANIA­_1988

Triton

Satellite

TRITON­_1991

Umbriel

Satellite

UMBRIEL­_1988

Uranus

Planet

URANUS­_1988

Venus

Planet

VENUS­_1991


E.2.2     Standardized ORMs

The elements of an ORM specification are defined in Table 7.10. Table E.2 is a directory of standardized ORMs organized by category of ORM and type of object. The ORM entries in each table are ordered alphabetically by their label. The directory includes deprecated ORMs in Annex J. ORM specifications may include one or more RT specifications. The RT specifications associated with an ORM immediately follow the ORM Table entry. RT entries are have a blank table cell shaded grey to distinguish RT entires from ORM entries in the tables.

Table E.2ORM specification directory

ORM and RT specification tables

ORM Table

RT Table

Abstract ORM specifications

Table E.3

Table E.4

Object fixed ERM specifications

Table E.5

Table E.6

Dynamic ERM specifications

Table E.7

N.A.

Time fixed instance of a dynamic ERM specifications

Table E.8

Table E.9

Object fixed planet (non-Earth) ORM specifications

Table E.10

Table E.11

Dynamic planet (non-Earth) ORM specifications

Table E.12

N.A.

Time fixed instance of a dynamic planet (non-Earth) ORM specifications

Table E.13

Table E.14

Object fixed satellite ORM specifications

Table E.15

Table E.16

Time fixed instance of a dynamic satellite ORM specifications

Table E.17

Table E.18

Stellar ORM specifications

Table E.19

Table E.20

Dynamic stellar ORM specifications

Table E.21

N.A.

Time fixed instance of a dynamic stellar ORM specifications

Table E.22

Table E.23

 

Table E.3 — Abstract ORM specifications

ORM Label

ORM
Code

Published
name

Reference ORM

Binding
information

Region

ORMT

RD
parameterization

References

ABSTRACT­_2D

1

2D modelling space

This is the reference ORM for abstract 2D object-space.

none 

Universal

BI­_AXIS­_ORIGIN­_2D

N/A

none

ABSTRACT­_3D

2

3D modelling space

This is the reference ORM for abstract 3D object-space.

none 

Universal

TRI­_PLANE

N/A

none

 

Table E.4 — Abstract ORM reference transformation specifications

Source ORM Label

RT Label

RT
Code

RT Region

RT Parameters

Date
published

References

ABSTRACT­_2D

ABSTRACT­_2D­_IDENTITY

1

Universal

N/A (reference ORM)

N/A

none

ABSTRACT­_3D

ABSTRACT­_3D­_IDENTITY

2

Universal

N/A (reference ORM)

N/A

none

 

Table E.5 — Object fixed ERM specifications

ORM Label

ORM
Code

Published
name

Reference ORM

Binding
information

Region

ORMT

RD
parameterization

References

ADINDAN­_1991

3

Adindan

WGS­_1984

1991 

Burkina Faso, Cameroon, Ethiopia, Mali, Senegal, and Sudan

OBLATE­_ELLIPSOID

CLARKE­_1880

[83502T, App. B.2, “ADI“]

AFGOOYE­_1987

5

Afgooye (Somalia)

WGS­_1984

1987 

Somalia

OBLATE­_ELLIPSOID

KRASSOVSKY­_1940

[83502T, App. B.2, “AFG“]

AIN­_EL­_ABD­_1970

6

Ain el Abd

WGS­_1984

1970 

Bahrain and Saudi Arabia

OBLATE­_ELLIPSOID

INTERNATIONAL­_1924

[83502T, App. B.3, “AIN“]

AMERICAN­_SAMOA­_1962

8

American Samoa

WGS­_1984

1962 

American Samoa Islands

OBLATE­_ELLIPSOID

CLARKE­_1866

[83502T, App. B.10, “AMA“]

ANNA­_1­_1965

9

Anna 1 (astronomic)

WGS­_1984

1965 

Cocos Islands

OBLATE­_ELLIPSOID

AUSTRALIAN­_NATIONAL­_1966

[83502T, App. B.9, “ANO“]

ANTIGUA­_1943

10

Antigua (astronomic)

WGS­_1984

1943 

Antigua and Leeward Islands

OBLATE­_ELLIPSOID

CLARKE­_1880

[83502T, App. B.8, “AIA“]

ARC­_1950

11

Arc

WGS­_1984

1950 

Botswana, Lesotho, Malawi, Swaziland, Zaire, Zambia, and Zimbabwe

OBLATE­_ELLIPSOID

CLARKE­_1880

[83502T, App. B.2, “ARF“]

ARC­_1960

12

Arc

WGS­_1984

1960 

Kenya and Tanzania

OBLATE­_ELLIPSOID

CLARKE­_1880

[83502T, App. B.2, “ARS“]

ASCENSION­_1958

14

Ascension

WGS­_1984

1958 

Ascension Island

OBLATE­_ELLIPSOID

INTERNATIONAL­_1924

[83502T, App. B.8, “ASC“]

AUSTRALIAN­_GEOD­_1966

16

Australian Geodetic

WGS­_1984

1966 

Australia and Tasmania

OBLATE­_ELLIPSOID

AUSTRALIAN­_NATIONAL­_1966

[83502T, App. B.4, “AUA“]

AUSTRALIAN­_GEOD­_1984

17

Australian Geodetic

WGS­_1984

1984 

Australia and Tasmania

OBLATE­_ELLIPSOID

AUSTRALIAN­_NATIONAL­_1966

[83502T, App. B.4, “AUG“]

AYABELLE­_LIGHTHOUSE­_1991

18

Ayabelle Lighthouse (Djibouti)

WGS­_1984

1991 

Djibouti

OBLATE­_ELLIPSOID

CLARKE­_1880

[83502T, App. B.2, “PHA“]

BEACON­_E­_1945

19

Beacon E (Iwo-jima; astronomic)

WGS­_1984

1945 

Iwo Jima Island

OBLATE­_ELLIPSOID

INTERNATIONAL­_1924

[83502T, App. B.10, “ATF“]

BELLEVUE­_IGN­_1987

21

Bellevue (IGN)

WGS­_1984

1987 

Efate and Erromango Islands (Vanuatu)

OBLATE­_ELLIPSOID

INTERNATIONAL­_1924

[83502T, App. B.10, “IBE“]

BERMUDA­_1957

22

Bermuda

WGS­_1984

1957 

Bermuda

OBLATE­_ELLIPSOID

CLARKE­_1866

[83502T, App. B.8, “BER“]

BISSAU­_1991

24

Bissau

WGS­_1984

1991 

Guinea-Bissau

OBLATE­_ELLIPSOID

INTERNATIONAL­_1924

[83502T, App. B.2, “BID“]

BOGOTA­_OBS­_1987

25

Bogota Observatory

WGS­_1984

1987 

Colombia

OBLATE­_ELLIPSOID

INTERNATIONAL­_1924

[83502T, App. B.7, “BOO“]

BOGOTA­_OBS­_1987­_PM­_BOGOTA

26

Bogota Observatory (with the Prime Meridian at Bogota)

WGS­_1984

1987
The x-positive xz-half-plane contains Bogota, Colombia (Instituto Geografico Augustin Cadazzi (IGAC) determination).

Colombia

OBLATE­_ELLIPSOID

INTERNATIONAL­_1924

[83502T, App. B.7, “BOO“]

BUKIT­_RIMPAH­_1987

27

Bukit Rimpah

WGS­_1984

1987 

Bangka and Belitung Islands (Indonesia)

OBLATE­_ELLIPSOID

BESSEL­_1841­_ETHIOPIA

[83502T, App. C.2, “BUR“]

CAMP­_AREA­_1987

30

Camp Area (astronomic)

WGS­_1984

1987 

McMurdo Camp Area (Antarctica)

OBLATE­_ELLIPSOID

INTERNATIONAL­_1924

[83502T, App. C.2, “CAZ“]

CAMPO­_INCHAUSPE­_1969

31

Campo Inchauspe

WGS­_1984

1969 

Argentina

OBLATE­_ELLIPSOID

INTERNATIONAL­_1924

[83502T, App. B.7, “CAI“]

CANTON­_1966

32

Canton (astronomic)

WGS­_1984

1966 

Phoenix Islands

OBLATE­_ELLIPSOID

INTERNATIONAL­_1924

[83502T, App. B.10, “CAO“]

CAPE­_1987

33

Cape

WGS­_1984

1987 

South Africa

OBLATE­_ELLIPSOID

CLARKE­_1880

[83502T, App. B.2, “CAP“]

CAPE­_CANAVERAL­_1991

34

Cape Canaveral

WGS­_1984

1991 

Bahamas and Florida

OBLATE­_ELLIPSOID

CLARKE­_1866

[83502T, App. B.6, “CAC“]

CARTHAGE­_1987

35

Carthage

WGS­_1984

1987 

Tunisia

OBLATE­_ELLIPSOID

CLARKE­_1880

[83502T, App. B.2, “CGE“]

CHATHAM­_1971

37

Chatam (astronomic)

WGS­_1984

1971 

Chatham Islands (New Zealand)

OBLATE­_ELLIPSOID

INTERNATIONAL­_1924

[83502T, App. B.10, “CHI“]

CHUA­_1987

38

Chua (astronomic)

WGS­_1984

1987 

Paraguay

OBLATE­_ELLIPSOID

INTERNATIONAL­_1924

[83502T, App. B.7, “CHU“]

COAMPS­_1998

39

Coupled Ocean/
Atmos­pheric Mesoscale Prediction System
(COAMPSTM)

WGS­_1984

1998 

Earth, Global

SPHERE­_ORIGIN

COAMPS­_1998

[ERNWM, Table 1, “COAMPS“]

CORREGO­_ALEGRE­_1987

41

Corrego Alegre

WGS­_1984

1987 

Brazil

OBLATE­_ELLIPSOID

INTERNATIONAL­_1924

[83502T, App. B.7, “COA“]

DABOLA­_1991

43

Dabola

WGS­_1984

1991 

Guinea

OBLATE­_ELLIPSOID

CLARKE­_1880

[83502T, App. B.2, “DAL“]

DECEPTION­_1993

44

Deception

WGS­_1984

1993 

Deception Island (Antarctica)

OBLATE­_ELLIPSOID

CLARKE­_1880

[83502T, App. B.8, “DID“]

DJAKARTA­_1987

49

Djakarta (also known as Batavia)

WGS­_1984

1987 

Sumatra (Indonesia)

OBLATE­_ELLIPSOID

BESSEL­_1841­_ETHIOPIA

[83502T, App. B.3, “BAT“]

DJAKARTA­_1987­_PM­_DJAKARTA

50

Djakarta (also known as Batavia; with the Prime Meridian at Djakarta)

WGS­_1984

1987
The x-positive xz-half-plane contains Djarkata, Indonesia.

Sumatra (Indonesia)

OBLATE­_ELLIPSOID

BESSEL­_1841­_ETHIOPIA

[83502T, App. B.3, “BAT“]

DOS­_1968

51

DOS

WGS­_1984

1968 

Gizo Island (New Georgia Islands)

OBLATE­_ELLIPSOID

INTERNATIONAL­_1924

[83502T, App. B.10, “GIZ“]

DOS­_71­_4­_1987

52

DOS 71/4 (St. Helena Island; astronomic)

WGS­_1984

1987 

St. Helena Island

OBLATE­_ELLIPSOID

INTERNATIONAL­_1924

[83502T, App. B.8, “SHB“]

EASTER­_1967

60

Easter

WGS­_1984

1967 

Easter Island

OBLATE­_ELLIPSOID

INTERNATIONAL­_1924

[83502T, App. B.10, “EAS“]

ESTONIA­_1937

64

Estonia

WGS­_1984

1937 

Estonia

OBLATE­_ELLIPSOID

BESSEL­_1841­_ETHIOPIA

[83502T, App. B.5, “EST“]

ETRS­_1989

65

European Terrestrial Reference System (ETRS)

WGS­_1984

1989 

Europe

OBLATE­_ELLIPSOID
­_ORIGIN

GRS­_1980

[HELM, “EUT“]

EUROPE­_1950

67

European

WGS­_1984

1950 

Europe

OBLATE­_ELLIPSOID

INTERNATIONAL­_1924

[83502T, App. B.5, “EUR“]

EUROPE­_1979

68

European

WGS­_1984

1979 

Europe

OBLATE­_ELLIPSOID

INTERNATIONAL­_1924

[83502T, App. B.5, “EUS“]

FAHUD­_1987

69

Fahud

WGS­_1984

1987 

Oman

OBLATE­_ELLIPSOID

CLARKE­_1880

[83502T, App. B.3, “FAH“]

FORT­_THOMAS­_1955

70

Fort Thomas

WGS­_1984

1955 

St. Kitts, Nevis and Leeward Islands

OBLATE­_ELLIPSOID

CLARKE­_1880

[83502T, App. B.8, “FOT“]

GAN­_1970

72

Gan

WGS­_1984

1970 

Republic of Maldives

OBLATE­_ELLIPSOID

INTERNATIONAL­_1924

[83502T, App. B.9, “GAA“]

GDA­_1994

75

Geocentric Datum of Australia (GDA)

WGS­_1984

1994 

Australia

OBLATE­_ELLIPSOID
­_ORIGIN

GRS­_1980

[HELM, “GDS“]

GEODETIC­_DATUM­_1949

76

Geodetic Datum

WGS­_1984

1949 

New Zealand

OBLATE­_ELLIPSOID

INTERNATIONAL­_1924

[83502T, App. B.10, “GEO“]

GRACIOSA­_BASE­_SW­_1948

89

Graciosa Base SW

WGS­_1984

1948 

Central Azores (Faial, Graciosa, Pico, Sao Jorge and Terceira Islands)

OBLATE­_ELLIPSOID

INTERNATIONAL­_1924

[83502T, App. B.8, “GRA“]

GUAM­_1963

90

Guam

WGS­_1984

1963 

Guam

OBLATE­_ELLIPSOID

CLARKE­_1866

[83502T, App. B.10, “GUA“]

GUNONG­_SEGARA­_1987

91

Gunung Segara

WGS­_1984

1987 

Kalimantan Island (Indonesia)

OBLATE­_ELLIPSOID

BESSEL­_1841­_ETHIOPIA

[83502T, App. C.2, “GSE“]

GUX­_1­_1987

92

GUX1 (astronomic)

WGS­_1984

1987 

Guadalcanal Island

OBLATE­_ELLIPSOID

INTERNATIONAL­_1924

[83502T, App. B.10, “DOB“]

HERAT­_NORTH­_1987

98

Herat North

WGS­_1984

1987 

Afghanistan

OBLATE­_ELLIPSOID

INTERNATIONAL­_1924

[83502T, App. C.2, “HEN“]

HERMANNSKOGEL­_1871

99

Hermannskogel

WGS­_1984

1871 

Austria, Yugoslavia (prior to 1990), Slovenia, Croatia, Bosnia and Herzegovina, and Serbia

OBLATE­_ELLIPSOID

BESSEL­_1841­_ETHIOPIA

[83502T, App. C.2, “HER“]

HJORSEY­_1955

100

Hjorsey

WGS­_1984

1955 

Iceland

OBLATE­_ELLIPSOID

INTERNATIONAL­_1924

[83502T, App. B.5, “HJO“]

HONG­_KONG­_1963

101

Hong Kong

WGS­_1984

1963 

Hong Kong

OBLATE­_ELLIPSOID

INTERNATIONAL­_1924

[83502T, App. B.3, “HKD“]

HU­_TZU­_SHAN­_1991

102

Hu-Tzu-Shan

WGS­_1984

1991 

Taiwan

OBLATE­_ELLIPSOID

INTERNATIONAL­_1924

[83502T, App. B.3, “HTN“]

INDIAN­_1916

105

Indian

WGS­_1984

1991 

Bangladesh

OBLATE­_ELLIPSOID

EVEREST­_ADJ­_1937

[83502T, App. B.3, “IND-B“]

INDIAN­_1954

106

Indian

WGS­_1984

1954 

Thailand

OBLATE­_ELLIPSOID

EVEREST­_ADJ­_1937

[83502T, App. B.3, “INF“]

INDIAN­_1956

107

Indian

WGS­_1984

1991 

India and Nepal

OBLATE­_ELLIPSOID

EVEREST­_1956

[83502T, App. B.3, “IND-I“]

INDIAN­_1960

108

Indian

WGS­_1984

1960 

Vietnam

OBLATE­_ELLIPSOID

EVEREST­_ADJ­_1937

[83502T, App. B.3, “ING“]

INDIAN­_1962

109

Indian

WGS­_1984

1962 

Pakistan

OBLATE­_ELLIPSOID

EVEREST­_REVISED­_1962

[83502T, App. C.2, “IND-P“]

INDIAN­_1975

110

Indian

WGS­_1984

1975 

Thailand

OBLATE­_ELLIPSOID

EVEREST­_ADJ­_1937

[83502T, App. B.3, “INH“]

INDONESIAN­_1974

111

Indonesian

WGS­_1984

1974 

Indonesia

OBLATE­_ELLIPSOID

INDONESIAN­_1974

[83502T, App. B.3, “IDN“]

IRELAND­_1965

113

Ireland 1965

WGS­_1984

1965 

Ireland

OBLATE­_ELLIPSOID

MODIFIED­_AIRY­_1849

[83502T, App. B.5, “IRL“]

ISTS­_061­_1968

114

International Satellite Triangulation Station (ISTS) 061 (astronomic)

WGS­_1984

1968 

South Georgia Island

OBLATE­_ELLIPSOID

INTERNATIONAL­_1924

[83502T, App. B.8, “ISG“]

ISTS­_073­_1969

115

International Satellite Triangulation Station (ISTS) 073 (astronomic)

WGS­_1984

1969 

Diego Garcia

OBLATE­_ELLIPSOID

INTERNATIONAL­_1924

[83502T, App. B.9, “IST“]

JGD­_2000

117

Japanese Geodetic Datum 2000 (JGD2000)

WGS­_1984

2000 

Japan

OBLATE­_ELLIPSOID
­_ORIGIN

GRS­_1980

[GRFJ]

JOHNSTON­_1961

118

Johnston

WGS­_1984

1961 

Johnston Island

OBLATE­_ELLIPSOID

INTERNATIONAL­_1924

[83502T, App. B.10, “JOH“]

KANDAWALA­_1987

127

Kandawala

WGS­_1984

1987 

Sri Lanka

OBLATE­_ELLIPSOID

EVEREST­_ADJ­_1937

[83502T, App. B.3, “KAN“]

KERGUELEN­_1949

128

Kerguelen

WGS­_1984

1949 

Kerguelen Island

OBLATE­_ELLIPSOID

INTERNATIONAL­_1924

[83502T, App. B.9, “KEG“]

KERTAU­_1948

129

Kertau

WGS­_1984

1948 

West Malaysia and Singapore

OBLATE­_ELLIPSOID

EVEREST­_1948

[83502T, App. B.3, “KEA“]

KOREAN­_GEODETIC­_1995

130

Korean Geodetic System

WGS­_1984

1995 

South Korea

OBLATE­_ELLIPSOID

WGS­_1984

[83502T, App. B.3, “KGS“]

KUSAIE­_1951

131

Kusaie 1951 (astronomic)

WGS­_1984

1951 

Caroline Islands (Federated States of Micronesia)

OBLATE­_ELLIPSOID

INTERNATIONAL­_1924

[83502T, App. B.10, “KUS“]

LC5­_1961

133

LC5 (astronomic)

WGS­_1984

1961 

Cayman Brac Island

OBLATE­_ELLIPSOID

CLARKE­_1866

[83502T, App. B.8, “LCF“]

LEIGON­_1991

134

Leigon

WGS­_1984

1991 

Ghana

OBLATE­_ELLIPSOID

CLARKE­_1880

[83502T, App. B.2, “LEH“]

LIBERIA­_1964

135

Liberia

WGS­_1984

1964 

Liberia

OBLATE­_ELLIPSOID

CLARKE­_1880

[83502T, App. B.2, “LIB“]

LUZON­_1987

136

Luzon

WGS­_1984

1987 

Philippines

OBLATE­_ELLIPSOID

CLARKE­_1866

[83502T, App. B.10, “LUZ“]

M­_PORALOKO­_1991

137

M'Poraloko

WGS­_1984

1991 

Gabon

OBLATE­_ELLIPSOID

CLARKE­_1880

[83502T, App. B.2, “MPO“]

MAHE­_1971

138

Mahe

WGS­_1984

1971 

Mahe Island (Seychelles)

OBLATE­_ELLIPSOID

CLARKE­_1880

[83502T, App. B.9, “MIK“]

MARCUS­_STATION­_1952

139

Marcus Station (astronomic)

WGS­_1984

1952 

Marcus Islands

OBLATE­_ELLIPSOID

INTERNATIONAL­_1924

[83502T, App. B.10, “ASQ“]

MASS­_1999

143

MASS

WGS­_1984

1999 

Earth, Global

SPHERE­_ORIGIN

MASS­_1999

[ERNWM, Table 1, “MASS“]

MASSAWA­_1987

144

Massawa

WGS­_1984

1987 

Eritrea and Ethiopia

OBLATE­_ELLIPSOID

BESSEL­_1841­_ETHIOPIA

[83502T, App. B.2, “MAS“]

MERCHICH­_1987

145

Merchich

WGS­_1984

1987 

Morocco

OBLATE­_ELLIPSOID

CLARKE­_1880

[83502T, App. B.2, “MER“]

MIDWAY­_1961

149

Midway 1961 (astronomic)

WGS­_1984

1961 

Midway Islands

OBLATE­_ELLIPSOID

INTERNATIONAL­_1924

[83502T, App. B.10, “MID“]

MINNA­_1991

151

Minna

WGS­_1984

1991 

Cameroon and Nigeria

OBLATE­_ELLIPSOID

CLARKE­_1880

[83502T, App. B.2, “MIN“]

MM5­_1997

153

Mesoscale (weather) Model 5(MM5)
Air Force Weather Agency (AFWA) US

WGS­_1984

1997 

Earth, Global

SPHERE­_ORIGIN

MM5­_1997

[ERNWM, Table 1, “MM5 (AFWA)“]

MODTRAN­_MIDLATITUDE­_N­_1989

154

MODTRAN

WGS­_1984

1989 

Earth northern midlatitude regions

SPHERE­_ORIGIN

MODTRAN­_MIDLATITUDE­_1989

[ERNWM, Table 1, “MODTRAD, Midlatitude“]

MODTRAN­_MIDLATITUDE­_S­_1989

155

MODTRAN

WGS­_1984

1989 

Earth southern midlatitude regions

SPHERE­_ORIGIN

MODTRAN­_MIDLATITUDE­_1989

[ERNWM, Table 1, “MODTRAD, Midlatitude“]

MODTRAN­_SUBARCTIC­_N­_1989

156

MODTRAN

WGS­_1984

1989 

Earth northern subarctic regions

SPHERE­_ORIGIN

MODTRAN­_SUBARCTIC­_1989

[ERNWM, Table 1, “MODTRAN, Subarctic“]

MODTRAN­_SUBARCTIC­_S­_1989

157

MODTRAN

WGS­_1984

1989 

Earth southern subarctic regions

SPHERE­_ORIGIN

MODTRAN­_SUBARCTIC­_1989

[ERNWM, Table 1, “MODTRAN, Subarctic“]

MODTRAN­_TROPICAL­_1989

158

MODTRAN

WGS­_1984

1989 

Earth tropical regions

SPHERE­_ORIGIN

MODTRAN­_TROPICAL­_1989

[ERNWM, Table 1, “MODTRAN, Tropical“]

MONTSERRAT­_1958

159

Montserrat (astronomic)

WGS­_1984

1958 

Montserrat and Leeward Islands

OBLATE­_ELLIPSOID

CLARKE­_1880

[83502T, App. B.8, “ASM“]

MULTIGEN­_FLAT­_EARTH­_1989

161

Multigen flat Earth

WGS­_1984

1989 

Earth, Global

SPHERE­_ORIGIN

MULTIGEN­_FLAT­_EARTH­_1989

[MFCG]

N­_AM­_1927

162

North American

WGS­_1984

1927 

North America

OBLATE­_ELLIPSOID

CLARKE­_1866

[83502T, App. B.6, “NAS“]

N­_AM­_1983

163

North American

WGS­_1984

1983 

North America

OBLATE­_ELLIPSOID

GRS­_1980

[83502T, App. B.6, “NAR“], [NAD83]

N­_SAHARA­_1959

164

North Sahara

WGS­_1984

1959 

Algeria

OBLATE­_ELLIPSOID

CLARKE­_1880

[83502T, App. B.2, “NSD“]

NAHRWAN­_1987

165

Nahrwan

WGS­_1984

1987 

Oman, Saudi Arabia, and the United Arab Emirates

OBLATE­_ELLIPSOID

CLARKE­_1880

[83502T, App. B.3, “NAH“]

NAPARIMA­_1991

167

Naparima BWI

WGS­_1984

1991 

Trinidad and Tobago (British West Indies)

OBLATE­_ELLIPSOID

INTERNATIONAL­_1924

[83502T, App. B.8, “NAP“]

NOGAPS­_1988

171

NOGAPS

WGS­_1984

1988 

Earth, Global

SPHERE­_ORIGIN

NOGAPS­_1988

[ERNWM, Table 1, “NOGAPS“]

NTF_1896

172

NTF

WGS­_1984

1896 

France

OBLATE­_ELLIPSOID

CLARKE_1880­_IGN

[HELM, “NFR“]

NTF_1896_PM_PARIS

173

NTF (with the Prime Meridian at Paris)

WGS­_1984

1896
The x-positive xz-half-plane contains Paris, France (IGN 1936 determin­ation).

France

OBLATE­_ELLIPSOID

CLARKE_1880­_IGN

[HELM, “NFR“]

OBSERV­_METEORO­_1939

175

Observatorio Meteoro­logico

WGS­_1984

1939 

Corvo Flores Islands (Azores)

OBLATE­_ELLIPSOID

INTERNATIONAL­_1924

[83502T, App. B.8, “FLO“]

OLD­_EGYPTIAN­_1907

176

Old Egyptian

WGS­_1984

1907 

Egypt

OBLATE­_ELLIPSOID

HELMERT­_1906

[83502T, App. B.2, “OEG“]

OLD­_HAWAIIAN­_CLARKE­_1987

177

Old Hawaiian (Clarke)

WGS­_1984

1987 

Hawaiian Islands

OBLATE­_ELLIPSOID

CLARKE­_1866

[83502T, App. B.10, “OHA“]

OLD­_HAWAIIAN­_INT­_1987

178

Old Hawaiian (International)

WGS­_1984

1987 

Hawaiian Islands

OBLATE­_ELLIPSOID

INTERNATIONAL­_1924

[83502T, App. B.10, “OHI“]

OSGB­_1936

180

Ordnance Survey of Great Britain

WGS­_1984

1936 

Great Britain

OBLATE­_ELLIPSOID

AIRY­_1830

[83502T, App. B.5, “OGB“]

PICO­_DE­_LAS­_NIEVES­_1987

185

Pico de las Nieves

WGS­_1984

1987 

Canary Islands (Spain)

OBLATE­_ELLIPSOID

INTERNATIONAL­_1924

[83502T, App. B.8, “PLN“]

PITCAIRN­_1967

186

Pitcairn (astronomic)

WGS­_1984

1967 

Pitcairn Island

OBLATE­_ELLIPSOID

INTERNATIONAL­_1924

[83502T, App. B.10, “PIT“]

POINT­_58­_1991

189

Point 58

WGS­_1984

1991 

Burkina Faso and Niger

OBLATE­_ELLIPSOID

CLARKE­_1880

[83502T, App. B.2, “PTB“]

POINTE­_NOIRE­_1948

190

Pointe Noire

WGS­_1984

1948 

Congo

OBLATE­_ELLIPSOID

CLARKE­_1880

[83502T, App. B.2, “PTN“]

PORTO­_SANTO­_1936

192

Porto Santo

WGS­_1984

1936 

Porto Santo and Madeira Islands

OBLATE­_ELLIPSOID

INTERNATIONAL­_1924

[83502T, App. B.8, “POS“]

PROV­_S­_AM­_1956

195

Provisional South American

WGS­_1984

1956 

South America

OBLATE­_ELLIPSOID

INTERNATIONAL­_1924

[83502T, App. B.7, “PRP“]

PROV­_S­_CHILEAN­_1963

196

Provisional South Chilean (Hito XVIII)

WGS­_1984

1963 

South Chile

OBLATE­_ELLIPSOID

INTERNATIONAL­_1924

[83502T, App. B.7, “HIT“]

PUERTO­_RICO­_1987

198

Puerto Rico

WGS­_1984

1987 

Puerto Rico and Virgin Islands

OBLATE­_ELLIPSOID

CLARKE­_1866

[83502T, App. B.8, “PUR“]

PULKOVO­_1942

199

Pulkovo

WGS­_1984

1942 

Eastern Europe and Russia

OBLATE­_ELLIPSOID

KRASSOVSKY­_1940

[83502T, App. C.2, “PUK“]

QATAR­_NATIONAL­_1974

200

Qatar National

WGS­_1984

1974 

Qatar

OBLATE­_ELLIPSOID

INTERNATIONAL­_1924

[83502T, App. B.3, “QAT“]

QORNOQ­_1987

201

Qornoq

WGS­_1984

1987 

South Greenland

OBLATE­_ELLIPSOID

INTERNATIONAL­_1924

[83502T, App. B.8, “QUO“]

REUNION­_1947

202

Reunion

WGS­_1984

1947 

Mascarene Islands

OBLATE­_ELLIPSOID

INTERNATIONAL­_1924

[83502T, App. B.9, “REU“]

RGF­_1993

203

Reseau Geodesique Francais

WGS­_1984

1993

France

OBLATE­_ELLIPSOID

GRS­_1980

[RGF]

ROME­_1940

205

Rome (also known as Monte Mario)

WGS­_1984

1940 

Italy, Sardinia, and Sicily

OBLATE­_ELLIPSOID

INTERNATIONAL­_1924

[83502T, App. B.5, “MOD“]

ROME­_1940­_PM­_ROME

206

Rome (also known as Monte Mario) (with the Prime Meridian at Rome)

WGS­_1984

1940
The x-positive xz-half-plane contains Rome, Italy.

Italy, Sardinia, and Sicily

OBLATE­_ELLIPSOID

INTERNATIONAL­_1924

[83502T, App. B.5, “MOD“]

S­_AM­_1969

208

South American

WGS­_1984

1969 

South America

OBLATE­_ELLIPSOID

SOUTH­_AMERICAN­_1969

[83502T, App. B.7, “SAN“]

S­_ASIA­_1987

209

South Asia

WGS­_1984

1987 

Singapore

OBLATE­_ELLIPSOID

MODIFIED­_FISCHER­_1960

[83502T, App. B.3, “SOA“]

S­_JTSK­_1993

210

System - Jednotne Trigonometricke Siti Katastralni (S-JTSK) (Czechoslovakia)

WGS­_1984

1993 

Czech Republic and Slovakia

OBLATE­_ELLIPSOID

BESSEL­_1841­_ETHIOPIA

[83502T, App. B.5, “CCD“]

S42­_PULKOVO

211

S-42 (Pulkovo)

WGS­_1984

1942 

Eastern Europe

OBLATE­_ELLIPSOID

KRASSOVSKY­_1940

[HELM, “SPK“, “Afghanistan“]

SANTO­_DOS­_1965

212

Santo (DOS)

WGS­_1984

1965 

Espirito Santo Island (Vanuatu)

OBLATE­_ELLIPSOID

INTERNATIONAL­_1924

[83502T, App. B.10, “SAE“]

SAO­_BRAZ­_1987

213

Sao Braz

WGS­_1984

1987 

Sao Miguel and Santa Maria Islands (Azores)

OBLATE­_ELLIPSOID

INTERNATIONAL­_1924

[83502T, App. B.8, “SAO“]

SAPPER­_HILL­_1943

214

Sapper Hill

WGS­_1984

1943 

East Falkland Islands

OBLATE­_ELLIPSOID

INTERNATIONAL­_1924

[83502T, App. B.8, “SAP“]

SCHWARZECK­_1991

218

Schwarzeck

WGS­_1984

1991 

Namibia

OBLATE­_ELLIPSOID

BESSEL­_1841­_NAMIBIA

[83502T, App. B.2, “SCK“]

SELVAGEM­_GRANDE­_1938

219

Selvagem Grande

WGS­_1984

1938 

Salvage Islands (Ilhas Selvagens; Savage Islands)

OBLATE­_ELLIPSOID

INTERNATIONAL­_1924

[83502T, App. B.8, “SGM“]

SIERRA­_LEONE­_1960

220

Sierra Leone

WGS­_1984

1960 

Sierra Leone

OBLATE­_ELLIPSOID

CLARKE­_1880

[83502T, App. B.2, “SRL“]

SIRGAS­_2000

221

Sistema de Referencia Geocentrico para America del Sur (SIRGAS)

WGS­_1984

2000 

South America

OBLATE­_ELLIPSOID
­_ORIGIN

GRS­_1980

[83502T, App. B.7, “SIR“]

TANANARIVE­_OBS­_1925

223

Tananarive Observatory

WGS­_1984

1925 

Madagascar

OBLATE­_ELLIPSOID

INTERNATIONAL­_1924

[83502T, App. C.2, “TAN“]

TANANARIVE­_OBS­_1925­_PM­_PARIS

224

Tananarive Observatory (with the Prime Meridian at Paris)

WGS­_1984

1925
The x-positive xz-half-plane contains Paris, France (IGN 1936 determination).

Madagascar

OBLATE­_ELLIPSOID

INTERNATIONAL­_1924

[83502T, App. C.2, “TAN“]

TERN­_1961

226

Tern (astronomic)

WGS­_1984

1961 

Tern Island (French Frigate Shoals, Hawaiian Islands)

OBLATE­_ELLIPSOID

INTERNATIONAL­_1924

[83502T, App. B.10, “TRN“]

TIMBALAI­_EVEREST­_1948

230

Timbali (Everest)

WGS­_1984

1948 

Brunei and East Malaysia (Sabah and Sarawak)

OBLATE­_ELLIPSOID

EVEREST­_BRUNEI­_1967

[83502T, App. B.3, “TIL“]

TOKYO­_1991

233

Tokyo

WGS­_1984

1991 

Japan, Korea, and Okinawa

OBLATE­_ELLIPSOID

BESSEL­_1841­_ETHIOPIA

[83502T, App. B.3, “TOY“]

TRISTAN­_1968

234

Tristan (astronomic)

WGS­_1984

1968 

Tristan da Cunha

OBLATE­_ELLIPSOID

INTERNATIONAL­_1924

[83502T, App. B.8, “TDC“]

VITI­_LEVU­_1916

242

Viti Levu

WGS­_1984

1916 

Viti Levu Island (Fiji Islands)

OBLATE­_ELLIPSOID

CLARKE­_1880

[83502T, App. B.10, “MVS“]

VOIROL­_1874

243

Voirol

WGS­_1984

1874 

Algeria

OBLATE­_ELLIPSOID

CLARKE­_1880

[83502T, App. C.2, “VOI“]

VOIROL­_1874­_PM­_PARIS

244

Voirol (with the Prime Meridian at Paris)

WGS­_1984

1874
The x-positive xz-half-plane contains Paris, France (IGN 1936 determination).

Algeria

OBLATE­_ELLIPSOID

CLARKE­_1880

[83502T, App. C.2, “VOI“]

VOIROL­_1960

245

Voirol - Revised

WGS­_1984

1960 

Algeria

OBLATE­_ELLIPSOID

CLARKE­_1880

[83502T, App. B.2, “VOR“]

VOIROL­_1960­_PM­_PARIS

246

Voirol - Revised (with the Prime Meridian at Paris)

WGS­_1984

1960
The x-positive xz-half-plane contains Paris, France (IGN 1936 determination).

Algeria

OBLATE­_ELLIPSOID

CLARKE­_1880

[83502T, App. B.2, “VOR“]

WAKE­_1952

247

Wake (astronomic)

WGS­_1984

1952 

Wake Atoll

OBLATE­_ELLIPSOID

INTERNATIONAL­_1924

[83502T, App. B.10, “WAK“]

WAKE­_ENIWETOK­_1960

248

Wake-Eniwetok

WGS­_1984

1960 

Marshall Islands

OBLATE­_ELLIPSOID

HOUGH­_1960

[83502T, App. B.10, “ENW“]

WGS­_1972

249

World Geodetic System

WGS­_1984

1972 

Earth, Global

OBLATE­_ELLIPSOID
­_ORIGIN

WGS­_1972

[WGS72]

WGS­_1984

250

World Geodetic System

This is the reference ORM for Earth.

1984
Note: The x-positive xz-half-plane contains Greenwich, UK.

Earth, Global

OBLATE­_ELLIPSOID
­_ORIGIN

WGS­_1984

[83502T]

YACARE­_1987

251

Yacare (Uruguay)

WGS­_1984

1987 

Uruguay

OBLATE­_ELLIPSOID

INTERNATIONAL­_1924

[83502T, App. C.2, “YAC“]

ZANDERIJ­_1987

252

Zanderij (Suriname)

WGS­_1984

1987 

Suriname

OBLATE­_ELLIPSOID

INTERNATIONAL­_1924

[83502T, App. B.7, “ZAN“]

 

Table E.6 — Object fixed ERM reference transformation specifications

Source ORM Label

RT Label

RT
Code

RT Region

RT Parameters

Date published

References

ADINDAN­_1991

ADINDAN­_1991­_BURKINA­_FASO

3

Burkina Faso;
+4º ≤ φ ≤ +22º;
-5º ≤ λ ≤ +8º

Δx = {ΔX(m)}, Δy = {ΔY(m)}, Δz = {ΔZ(m)}, ω1 = ω2 = ω3 = 0“ : precise, Δs = 0 : precise

1991

[83502T, App. B.2, “ADI-E“]

ADINDAN­_1991­_CAMEROON

4

Cameroon;
-4º ≤ φ ≤ +19º;
+3º ≤ λ ≤ +23º

Δx = {ΔX(m)}, Δy = {ΔY(m)}, Δz = {ΔZ(m)}, ω1 = ω2 = ω3 = 0“ : precise, Δs = 0 : precise

1991

[83502T, App. B.2, “ADI-F“]

ADINDAN­_1991­_ETHIOPIA

5

Ethiopia;
-3º ≤ φ ≤ +25º;
+26º ≤ λ ≤ +50º

Δx = -165, Δy = -11, Δz = 206, ω1 = ω2 = ω3 = 0“, Δs = 0.

1991

[83502T, App. B.2, “ADI-A“]

ADINDAN­_1991­_MALI

6

Mali;
+3º ≤ φ ≤ +31º;
-20º ≤ λ ≤ +11º

Δx = {ΔX(m)}, Δy = {ΔY(m)}, Δz = {ΔZ(m)}, ω1 = ω2 = ω3 = 0“ : precise, Δs = 0 : precise

1991

[83502T, App. B.2, “ADI-C“]

ADINDAN­_1991­_MEAN­_SOLUTION

7

Mean Solution (Ethiopia and Sudan);
-5º ≤ φ ≤ +31º;
+15º ≤ λ ≤ +55º

Δx = -166, Δy = -15, Δz = 204, ω1 = ω2 = ω3 = 0“, Δs = 0.

1991

[83502T, App. B.2, “ADI-M“]

ADINDAN­_1991­_SENEGAL

8

Senegal;
+5º ≤ φ ≤ +23º;
-24º ≤ λ ≤ -5º

Δx = {ΔX(m)}, Δy = {ΔY(m)}, Δz = {ΔZ(m)}, ω1 = ω2 = ω3 = 0“ : precise, Δs = 0 : precise

1991

[83502T, App. B.2, “ADI-D“]

ADINDAN­_1991­_SUDAN

9

Sudan;
-3º ≤ φ ≤ +31º;
+15º ≤ λ ≤ +45º

Δx = -161, Δy = -14, Δz = 205, ω1 = ω2 = ω3 = 0“, Δs = 0.

1991

[83502T, App. B.2, “ADI-B“]

AFGOOYE­_1987

AFGOOYE­_1987­_SOMALIA

11

Somalia;
-8º ≤ φ ≤ +19º;
+35º ≤ λ ≤ +60º

Δx = {ΔX(m)}, Δy = {ΔY(m)}, Δz = {ΔZ(m)}, ω1 = ω2 = ω3 = 0“ : precise, Δs = 0 : precise

1987

[83502T, App. B.2, “AFG“]

AIN­_EL­_ABD­_1970

AIN­_EL­_ABD­_1970­_BAHRAIN­_ISLAND

12

Bahrain Island;
+24º ≤ φ ≤ +28º;
+49º ≤ λ ≤ +53º

Δx = {ΔX(m)}, Δy = {ΔY(m)}, Δz = {ΔZ(m)}, ω1 = ω2 = ω3 = 0“ : precise, Δs = 0 : precise

1970

[83502T, App. B.3, “AIN-A“]

AIN­_EL­_ABD­_1970­_SAUDI­_ARABIA

13

Saudi Arabia;
+8º ≤ φ ≤ +38º;
+28º ≤ λ ≤ +62º

Δx = -143, Δy = -236, Δz = 7, ω1 = ω2 = ω3 = 0“, Δs = 0.

1970

[83502T, App. B.3, “AIN-B“]

AMERICAN­_SAMOA­_1962

AMERICAN­_SAMOA­_1962­_AMERICAN­_SAMOA­_ISLANDS

15

American Samoa Islands;
-19º ≤ φ ≤ -9º;
-174º ≤ λ ≤ -165º

Δx = {ΔX(m)}, Δy = {ΔY(m)}, Δz = {ΔZ(m)}, ω1 = ω2 = ω3 = 0“ : precise, Δs = 0 : precise

1962

[83502T, App. B.10, “AMA“]

ANNA­_1­_1965

ANNA­_1­_1965­_COCOS­_ISLANDS

16

Cocos Islands;
-14º ≤ φ ≤ -10º;
+94º ≤ λ ≤ +99º

Δx = {ΔX(m)}, Δy = {ΔY(m)}, Δz = {ΔZ(m)}, ω1 = ω2 = ω3 = 0“ : precise, Δs = 0 : precise

1965

[83502T, App. B.9, “ANO“]

ANTIGUA­_1943

ANTIGUA­_1943­_ANTIGUA­_LEEWARD­_ISLANDS

17

Antigua and Leeward Islands;
+16º ≤ φ ≤ +20º;
-65º ≤ λ ≤ -61º

Δx = {ΔX(m)}, Δy = {ΔY(m)}, Δz = {ΔZ(m)}, ω1 = ω2 = ω3 = 0“ : precise, Δs = 0 : precise

1943

[83502T, App. B.8, “AIA“]

ARC­_1950

ARC­_1950­_3­_ZIMBABWE

18

Zimbabwe;
-29º ≤ φ ≤ -9º;
+19º ≤ λ ≤ +39º

Δx = -142, Δy = -96, Δz = -293, ω1 = ω2 = ω3 = 0“, Δs = 0.

1950

[83502T, App. B.2, “ARF-G“]

ARC­_1950­_BOTSWANA

19

Botswana;
-33º ≤ φ ≤ -13º;
+13º ≤ λ ≤ +36º

Δx = -138, Δy = -105, Δz = -289, ω1 = ω2 = ω3 = 0“, Δs = 0..

1950

[83502T, App. B.2, “ARF-A“]

ARC­_1950­_BURUNDI

20

Burundi;
-11º ≤ φ ≤ +4º;
+21º ≤ λ ≤ +37º

Δx = {ΔX(m)}, Δy = {ΔY(m)}, Δz = {ΔZ(m)}, ω1 = ω2 = ω3 = 0“ : precise, Δs = 0 : precise

1950

[83502T, App. B.2, “ARF-H“]

ARC­_1950­_LESOTHO

21

Lesotho;
-36º ≤ φ ≤ -23º;
+21º ≤ λ ≤ +35º

Δx = {ΔX(m)}, Δy = {ΔY(m)}, Δz = {ΔZ(m)}, ω1 = ω2 = ω3 = 0“ : precise, Δs = 0 : precise

1950

[83502T, App. B.2, “ARF-B“]

ARC­_1950­_MALAWI

22

Malawi;
-21º ≤ φ ≤ -3º;
+26º ≤ λ ≤ +42º

Δx = -161, Δy = -73, Δz = -317, ω1 = ω2 = ω3 = 0“, Δs = 0.

1950

[83502T, App. B.2, “ARF-C“]

ARC­_1950­_MEAN­_SOLUTION

23

Mean Solution (Botswana, Lesotho, Malawi, Swaziland, Zaire, Zambia and Zimbabwe);
-36º ≤ φ ≤ +10º;
+4º ≤ λ ≤ +42º

Δx = -143, Δy = -90, Δz = -294, ω1 = ω2 = ω3 = 0“, Δs = 0.

1950

[83502T, App. B.2, “ARF-M“]

ARC­_1950­_SWAZILAND

24

Swaziland;
-33º ≤ φ ≤ -20º;
+25º ≤ λ ≤ +40º

Δx = {ΔX(m)}, Δy = {ΔY(m)}, Δz = {ΔZ(m)}, ω1 = ω2 = ω3 = 0“ : precise, Δs = 0 : precise

1950

[83502T, App. B.2, “ARF-D“]

ARC­_1950­_ZAIRE

25

Zaire;
-21º ≤ φ ≤ +10º;
+4º ≤ λ ≤ +38º

Δx = {ΔX(m)}, Δy = {ΔY(m)}, Δz = {ΔZ(m)}, ω1 = ω2 = ω3 = 0“ : precise, Δs = 0 : precise

1950

[83502T, App. B.2, “ARF-E“]

ARC­_1950­_ZAMBIA

26

Zambia;
-24º ≤ φ ≤ -1º;
+15º ≤ λ ≤ +40º

Δx = {ΔX(m)}, Δy = {ΔY(m)}, Δz = {ΔZ(m)}, ω1 = ω2 = ω3 = 0“ : precise, Δs = 0 : precise

1950

[83502T, App. B.2, “ARF-F“]

ARC­_1960

ARC­_1960­_3­_KENYA

27

Kenya;
-11º ≤ φ ≤ +8º;
+28º ≤ λ ≤ +47º

Δx = -157, Δy = -2, Δz = -299, ω1 = ω2 = ω3 = 0“, Δs = 0.

1960

[83502T, App. B.2, “ARS-A“]

ARC­_1960­_MEAN­_SOLUTION

28

Mean Solution (Kenya and Tanzania);
-18º ≤ φ ≤ +8º;
+23º ≤ λ ≤ +47º

Δx = {ΔX(m)}, Δy = {ΔY(m)}, Δz = {ΔZ(m)}, ω1 = ω2 = ω3 = 0“ : precise, Δs = 0 : precise

1960

[83502T, App. B.2, “ARS-M“]

ARC­_1960­_TANZANIA

29

Tanzania;
-18º ≤ φ ≤ +5º;
+23º ≤ λ ≤ +47º

Δx = -175, Δy = -23, Δz = -303, ω1 = ω2 = ω3 = 0“, Δs = 0.

1960

[83502T, App. B.2, “ARS-B“]

ASCENSION­_1958

ASCENSION­_1958­_ASCENSION­_ISLAND

31

Ascension Island;
-9º ≤ φ ≤ -6º;
-16º ≤ λ ≤ -13º

Δx = {ΔX(m)}, Δy = {ΔY(m)}, Δz = {ΔZ(m)}, ω1 = ω2 = ω3 = 0“ : precise, Δs = 0 : precise

1958

[83502T, App. B.8, “ASC“]

AUSTRALIAN­_GEOD­_1966

AUSTRALIAN­_GEOD­_1966­_AUSTRALIA­_TASMANIA

33

Australia and Tasmania;
-46º ≤ φ ≤ -4º;
+109º ≤ λ ≤ +161º

Δx = -133, Δy = -48, Δz = 148, ω1 = ω2 = ω3 = 0“, Δs = 0.

1966

[83502T, App. B.4, “AUA“]

AUSTRALIAN­_GEOD­_1984

AUSTRALIAN­_GEOD­_1984­_3­_AUSTRALIA­_TASMANIA

34

Australia and Tasmania;
-46º ≤ φ ≤ -4º;
+109º ≤ λ ≤ +161º

Δx = -134, Δy = -48, Δz = 149, ω1 = ω2 = ω3 = 0“, Δs = 0.

1984

[83502T, App. B.4, “AUG“]

AUSTRALIAN­_GEOD­_1984­_7­_AUSTRALIA­_TASMANIA

35

Australia and Tasmania;
-46º ≤ φ ≤ -4º;
+109º ≤ λ ≤ +161º

Δx = -116, Δy = -50,47, Δz = 141,69, ω1 = 0,23“, ω2 = 0,39“, ω3 = 0,344“, Δs = 0,098 3 x 10-6.

1984

[CECT, Table 1]

AYABELLE­_LIGHTHOUSE­_1991

AYABELLE­_LIGHTHOUSE­_1991­_DJIBOUTI

36

Djibouti;
+5º ≤ φ ≤ +20º;
+36º ≤ λ ≤ +49º

Δx = {ΔX(m)}, Δy = {ΔY(m)}, Δz = {ΔZ(m)}, ω1 = ω2 = ω3 = 0“ : precise, Δs = 0 : precise

1991

[83502T, App. B.2, “PHA“]

BEACON­_E­_1945

BEACON­_E­_1945­_IWO­_JIMA­_ISLAND

37

Iwo Jima Island;
+22º ≤ φ ≤ +26º;
+140º ≤ λ ≤ +144º

Δx = {ΔX(m)}, Δy = {ΔY(m)}, Δz = {ΔZ(m)}, ω1 = ω2 = ω3 = 0“ : precise, Δs = 0 : precise

1945

[83502T, App. B.10, “ATF“]

BELLEVUE­_IGN­_1987

BELLEVUE­_IGN­_1987­_EFATE­_ERROMANGO­_ISLANDS

39

Efate and Erromango Islands (Vanuatu);
-20º ≤ φ ≤ -16º;
+167º ≤ λ ≤ +171º

Δx = {ΔX(m)}, Δy = {ΔY(m)}, Δz = {ΔZ(m)}, ω1 = ω2 = ω3 = 0“ : precise, Δs = 0 : precise

1987

[83502T, App. B.10, “IBE“]

BERMUDA­_1957

BERMUDA­_1957­_BERMUDA

40

Bermuda;
+31º ≤ φ ≤ +34º;
-66º ≤ λ ≤ -63º

Δx = {ΔX(m)}, Δy = {ΔY(m)}, Δz = {ΔZ(m)}, ω1 = ω2 = ω3 = 0“ : precise, Δs = 0 : precise

1957

[83502T, App. B.8, “BER“]

BISSAU­_1991

BISSAU­_1991­_GUINEA­_BISSAU

42

Guinea-Bissau;
+5º ≤ φ ≤ +19º;
-23º ≤ λ ≤ -7º

Δx = {ΔX(m)}, Δy = {ΔY(m)}, Δz = {ΔZ(m)}, ω1 = ω2 = ω3 = 0“ : precise, Δs = 0 : precise

1991

[83502T, App. B.2, “BID“]

BOGOTA­_OBS­_1987

BOGOTA­_OBS­_1987­_COLOMBIA

43

Colombia;
-10º ≤ φ ≤ +16º;
-85º ≤ λ ≤ -61º

Δx = {ΔX(m)}, Δy = {ΔY(m)}, Δz = {ΔZ(m)}, ω1 = ω2 = ω3 = 0“ : precise, Δs = 0 : precise

1987

[83502T, App. B.7, “BOO“]

BOGOTA­_OBS­_1987­_PM­_BOGOTA

BOGOTA­_OBS­_1987­_PM­_BOGOTA­_COLOMBIA

44

Colombia;
-10º ≤ φ ≤ +16º;
-11º ≤ λ ≤ +13º

Δx = 307, Δy = 304, Δz = -318, ω1 = 0“, ω2 = 0“, ω3 = -74º 4′ 51,3“, Δs = 0.
Note: The referenced z-axis rotation has been offset so that Bogota is contained in the x-positive xz-plane.

1987

[83502T, App. B.7, “BOO“]

BUKIT­_RIMPAH­_1987

BUKIT­_RIMPAH­_1987­_BANGKA­_BELITUNG­_ISLANDS

45

Bangka and Belitung Islands (Indonesia);
-6º ≤ φ ≤ +0º;
+103º ≤ λ ≤ +110º

Δx = {ΔX(m)}, Δy = {ΔY(m)}, Δz = {ΔZ(m)}, ω1 = ω2 = ω3 = 0“ : precise, Δs = 0 : precise

1987

[83502T, App. C.2, “BUR“]

CAMP­_AREA­_1987

CAMP­_AREA­_1987­_MCMURDO­_CAMP

48

McMurdo Camp Area (Antarctica);
-85º ≤ φ ≤ -70º;
+135º ≤ λ ≤ +180º

Δx = {ΔX(m)}, Δy = {ΔY(m)}, Δz = {ΔZ(m)}, ω1 = ω2 = ω3 = 0“ : precise, Δs = 0 : precise

1987

[83502T, App. C.2, “CAZ“]

CAMPO­_INCHAUSPE­_1969

CAMPO­_INCHAUSPE­_1969­_ARGENTINA

49

Argentina;
-58º ≤ φ ≤ -27º;
-72º ≤ λ ≤ -51º

Δx = -148, Δy = 136, Δz = 90, ω1 = ω2 = ω3 = 0“, Δs = 0.

1969

[83502T, App. B.7, “CAI“]

CANTON­_1966

CANTON­_1966­_PHOENIX­_ISLANDS

50

Phoenix Islands;
-13º ≤ φ ≤ +3º;
-180º ≤ λ ≤ -165º

Δx = {ΔX(m)}, Δy = {ΔY(m)}, Δz = {ΔZ(m)}, ω1 = ω2 = ω3 = 0“ : precise, Δs = 0 : precise

1966

[83502T, App. B.10, “CAO“]

CAPE­_1987

CAPE­_1987­_SOUTH­_AFRICA

51

South Africa;
-43º ≤ φ ≤ -15º;
+10º ≤ λ ≤ +40º

Δx = {ΔX(m)}, Δy = {ΔY(m)}, Δz = {ΔZ(m)}, ω1 = ω2 = ω3 = 0“ : precise, Δs = 0 : precise

1987

[83502T, App. B.2, “CAP“]

CAPE­_CANAVERAL­_1991

CAPE­_CANAVERAL­_1991­_MEAN­_SOLUTION

52

Mean Solution (Bahamas and Florida);
+15º ≤ φ ≤ +38º;
-94º ≤ λ ≤ -12º

Δx = -2, Δy = 151, Δz = 181, ω1 = ω2 = ω3 = 0“, Δs = 0.

1991

[83502T, App. B.6, “CAC“]

CARTHAGE­_1987

CARTHAGE­_1987­_TUNISIA

53

Tunisia;
+24º ≤ φ ≤ +43º;
+2º ≤ λ ≤ +18º

Δx = {ΔX(m)}, Δy = {ΔY(m)}, Δz = {ΔZ(m)}, ω1 = ω2 = ω3 = 0“ : precise, Δs = 0 : precise

1987

[83502T, App. B.2, “CGE“]

CHATHAM­_1971

CHATHAM­_1971­_CHATHAM­_ISLANDS

55

Chatham Islands (New Zealand);
-46º ≤ φ ≤ -42º;
-180º ≤ λ ≤ -174º

Δx = {ΔX(m)}, Δy = {ΔY(m)}, Δz = {ΔZ(m)}, ω1 = ω2 = ω3 = 0“ : precise, Δs = 0 : precise

1971

[83502T, App. B.7, “CHI“]

CHUA­_1987

CHUA­_1987­_PARAGUAY

56

Paraguay;
-33º ≤ φ ≤ -14º;
-69º ≤ λ ≤ -49º

Δx = -134, Δy = 229, Δz = -29, ω1 = ω2 = ω3 = 0“, Δs = 0.

1987

[83502T, App. B.7, “CHU“]

COAMPS­_1998

COAMPS­_1998­_IDENTITY­_BY­_DEFAULT

57

Global (Earth)

Δx = Δy = Δz = 0, ω1 = ω2 = ω3 = 0“, Δs = 0.

1998

[ERNWM, Table 1, “COAMPS“]

CORREGO­_ALEGRE­_1987

CORREGO­_ALEGRE­_1987­_BRAZIL

59

Brazil;
-39º ≤ φ ≤ -2º;
-80º ≤ λ ≤ -29º

Δx = -206, Δy = 172, Δz = -6, ω1 = ω2 = ω3 = 0“, Δs = 0.

1987

[83502T, App. B.7, “COA“]

DABOLA­_1991

DABOLA­_1991­_GUINEA

61

Guinea;
+1º ≤ φ ≤ +19º;
-17º ≤ λ ≤ -7º

Δx = {ΔX(m)}, Δy = {ΔY(m)}, Δz = {ΔZ(m)}, ω1 = ω2 = ω3 = 0“ : precise, Δs = 0 : precise

1991

[83502T, App. B.2, “DAL“]

DECEPTION­_1993

DECEPTION­_1993­_DECEPTION­_ISLAND

62

Deception Island (Antarctica);
-65º ≤ φ ≤ -62º;
+58º ≤ λ ≤ +62º

Δx = {ΔX(m)}, Δy = {ΔY(m)}, Δz = {ΔZ(m)}, ω1 = ω2 = ω3 = 0“ : precise, Δs = 0 : precise

1993

[83502T, App. B.8, “DID“]

DJAKARTA­_1987

DJAKARTA­_1987­_SUMATRA

68

Sumatra (Indonesia);
-16º ≤ φ ≤ +11º;
+89º ≤ λ ≤ +146º

Δx = {ΔX(m)}, Δy = {ΔY(m)}, Δz = {ΔZ(m)}, ω1 = ω2 = ω3 = 0“ : precise, Δs = 0 : precise

1987

[83502T, App. B.3, “BAT“]

DJAKARTA­_1987­_PM­_DJAKARTA

DJAKARTA­_1987­_PM­_DJAKARTA­_SUMATRA

67

Sumatra (Indonesia);
-16º ≤ φ ≤ +11º;
-18º ≤ λ ≤ +39º

Δx = {ΔX(m)}, Δy = {ΔY(m)}, Δz = {ΔZ(m)}, ω1 = ω2 = 0“ : precise, ω3 = 106º 48′ 27,79“ : assumed precise, Δs = 0 : precise
Note: The referenced z-axis rotation has been offset so that Djakarta is contained in the x-positive xz-plane.

1987

[83502T, App. B.3, “BAT“]

DOS­_1968

DOS­_1968­_GIZO­_ISLAND

69

Gizo Island (New Georgia Islands);
-10º ≤ φ ≤ -7º;
+155º ≤ λ ≤ +158º

Δx = {ΔX(m)}, Δy = {ΔY(m)}, Δz = {ΔZ(m)}, ω1 = ω2 = ω3 = 0“ : precise, Δs = 0 : precise

1987

[83502T, App. B.10, “GIZ“]

DOS­_71­_4­_1987

DOS­_71­_4­_1987­_ST­_HELENA­_ISLAND

70

St. Helena Island;
-18º ≤ φ ≤ -14º;
-7º ≤ λ ≤ -4º

Δx = {ΔX(m)}, Δy = {ΔY(m)}, Δz = {ΔZ(m)}, ω1 = ω2 = ω3 = 0“ : precise, Δs = 0 : precise

1987

[83502T, App. B.8, “SHB“]

EASTER­_1967

EASTER­_1967­_EASTER­_ISLAND

71

Easter Island;
-29º ≤ φ ≤ -26º;
-111º ≤ λ ≤ -108º

Δx = {ΔX(m)}, Δy = {ΔY(m)}, Δz = {ΔZ(m)}, ω1 = ω2 = ω3 = 0“ : precise, Δs = 0 : precise

1967

[83502T, App. B.10, “EAS“]

ESTONIA­_1937

ESTONIA­_1937­_ESTONIA

75

Estonia;
+52º ≤ φ ≤ +65º;
+16º ≤ λ ≤ +34º

Δx = 374, Δy = 150, Δz = 588, ω1 = ω2 = ω3 = 0“, Δs = 0.

1937

[83502T, App. B.5, “EST“]

ETRS­_1989

ETRS­_1989­_IDENTITY­_BY­_MEASUREMENT

76

Europe;
+34º ≤ φ ≤ +73º;
-12º ≤ λ ≤ +30º

Δx = Δy = Δz = 0, ω1 = ω2 = ω3 = 0“, Δs = 0.

1989

[HELM, “EUT“]

EUROPE­_1950

EUROPE­_1950­_3­_CYPRUS

78

Cyprus;
+33º ≤ φ ≤ +37º;
+31º ≤ λ ≤ +36º

Δx = {ΔX(m)}, Δy = {ΔY(m)}, Δz = {ΔZ(m)}, ω1 = ω2 = ω3 = 0“ : precise, Δs = 0 : precise

1950

[83502T, App. B.5, “EUR-E“]

EUROPE­_1950­_CHANNEL­_ISLANDS

79

Channel Islands;
+48º ≤ φ ≤ +50º;
-4º ≤ λ ≤ -1º

Δx = -83,901, Δy = -98,127, Δz = -118,635, ω1 = ω2 = ω3 = 0“, Δs = 0.

1950

[HELM, “EUR“, “Channel Islands“]

EUROPE­_1950­_EGYPT

80

Egypt;
+16º ≤ φ ≤ +38º;
+19º ≤ λ ≤ +42º

Δx = -130, Δy = -117, Δz = -151, ω1 = ω2 = ω3 = 0“, Δs = 0.

1950

[83502T, App. B.5, “EUR-F“]

EUROPE­_1950­_ENGLAND­_SCOTLAND

81

England, Scotland, Channel Islands and Shetland Islands;
+48º ≤ φ ≤ +62º;
-10º ≤ λ ≤ +3º

Δx = {ΔX(m)}, Δy = {ΔY(m)}, Δz = {ΔZ(m)}, ω1 = ω2 = ω3 = 0“ : precise, Δs = 0 : precise

1950

[83502T, App. B.5, “EUR-G“]

EUROPE­_1950­_GREECE

82

Greece;
+30º ≤ φ ≤ +48º;
+14º ≤ λ ≤ +34º

Δx = {ΔX(m)}, Δy = {ΔY(m)}, Δz = {ΔZ(m)}, ω1 = ω2 = ω3 = 0“ : precise, Δs = 0 : precise

1950

[83502T, App. B.5, “EUR-B“]

EUROPE­_1950­_IRAN

83

Iran;
+19º ≤ φ ≤ +47º;
+37º ≤ λ ≤ +69º

Δx = -117, Δy = -132, Δz = -164, ω1 = ω2 = ω3 = 0“, Δs = 0.

1950

[83502T, App. B.5, “EUR-H“]

EUROPE­_1950­_IRAQ

84

Iraq;
-38º ≤ φ ≤ -4º;
+36º ≤ λ ≤ +57º

Δx = {ΔX(m)}, Δy = {ΔY(m)}, Δz = {ΔZ(m)}, ω1 = ω2 = ω3 = 0“ : precise, Δs = 0 : precise

1950

[83502T, App. C.2, “EUR-S“]

EUROPE­_1950­_IRELAND

85

Ireland, Northern Ireland, Wales, England, Scotland, Channel Islands, and Shetland Islands;
+48º ≤ φ ≤ +62º;
-12º ≤ λ ≤ +3º

Δx = {ΔX(m)}, Δy = {ΔY(m)}, Δz = {ΔZ(m)}, ω1 = ω2 = ω3 = 0“ : precise, Δs = 0 : precise

1950

[83502T, App. B.5, “EUR-K“]

EUROPE­_1950­_MALTA

86

Malta;
+34º ≤ φ ≤ +38º;
+12º ≤ λ ≤ +16º

Δx = {ΔX(m)}, Δy = {ΔY(m)}, Δz = {ΔZ(m)}, ω1 = ω2 = ω3 = 0“ : precise, Δs = 0 : precise

1950

[83502T, App. B.5, “EUR-L“]

EUROPE­_1950­_MEAN­_SOLUTION

87

Mean Solution (Austria, Belgium, Denmark, Finland, France, FRG (Federal Republic of Germany), Gibraltar, Greece, Italy, Luxembourg, Netherlands, Norway, Portugal, Spain, Sweden and Switzerland);
+30º ≤ φ ≤ +80º;
+5º ≤ λ ≤ +33º

Δx = -87, Δy = -98, Δz = -121, ω1 = ω2 = ω3 = 0“, Δs = 0.

1950

[83502T, App. B.5, “EUR-M“]

EUROPE­_1950­_NORWAY

88

Finland and Norway;
+52º ≤ φ ≤ +80º;
-2º ≤ λ ≤ +38º

Δx = -87, Δy = -95, Δz = -120, ω1 = ω2 = ω3 = 0“, Δs = 0.

1950

[83502T, App. B.5, “EUR-C“]

EUROPE­_1950­_PORTUGAL­_SPAIN

89

Portugal and Spain;
+30º ≤ φ ≤ +49º;
-15º ≤ λ ≤ +10º

Δx = -84, Δy = -107, Δz = -120, ω1 = ω2 = ω3 = 0“, Δs = 0.

1950

[83502T, App. B.5, “EUR-D“]

EUROPE­_1950­_SARDINIA

90

Sardinia (Italy);
+37º ≤ φ ≤ +43º;
+6º ≤ λ ≤ +12º

Δx = {ΔX(m)}, Δy = {ΔY(m)}, Δz = {ΔZ(m)}, ω1 = ω2 = ω3 = 0“ : precise, Δs = 0 : precise

1950

[83502T, App. B.5, “EUR-I“]

EUROPE­_1950­_SICILY

91

Sicily (Italy);
+35º ≤ φ ≤ +40º;
+10º ≤ λ ≤ +17º

Δx = {ΔX(m)}, Δy = {ΔY(m)}, Δz = {ΔZ(m)}, ω1 = ω2 = ω3 = 0“ : precise, Δs = 0 : precise

1950

[83502T, App. B.5, “EUR-J“]

EUROPE­_1950­_TUNISIA

92

Tunisia;
+24º ≤ φ ≤ +43º;
+2º ≤ λ ≤ +18º

Δx = {ΔX(m)}, Δy = {ΔY(m)}, Δz = {ΔZ(m)}, ω1 = ω2 = ω3 = 0“ : precise, Δs = 0 : precise

1950

[83502T, App. B.5, “EUR-T“]

EUROPE­_1950­_W­_EUROPE­_MEAN­_SOLUTION

93

Western Europe Mean Solution (Austria, Denmark, France, FRG (Federal Republic of Germany), Netherlands and Switzerland);
+30º ≤ φ ≤ +78º;
-15º ≤ λ ≤ +25º

Δx = -87, Δy = -96, Δz = -120, ω1 = ω2 = ω3 = 0“, Δs = 0.

1950

[83502T, App. B.5, “EUR-A“]

EUROPE­_1979

EUROPE­_1979­_MEAN­_SOLUTION

94

Mean Solution (Austria, Finland, Netherlands, Norway, Spain, Sweden and Switzerland);
+30º ≤ φ ≤ +80º;
-15º ≤ λ ≤ +24º

Δx = -86, Δy = -98, Δz = -119, ω1 = ω2 = ω3 = 0“, Δs = 0.

1979

[83502T, App. B.5, “EUS“]

FAHUD­_1987

FAHUD­_1987­_3­_OMAN

95

Oman;
+10º ≤ φ ≤ +32º;
+46º ≤ λ ≤ +65º

Δx = {ΔX(m)}, Δy = {ΔY(m)}, Δz = {ΔZ(m)}, ω1 = ω2 = ω3 = 0“ : precise, Δs = 0 : precise

1987

[83502T, App. B.3, “FAH“]

FAHUD­_1987­_7­_OMAN

96

Oman;
+10º ≤ φ ≤ +32º;
+46º ≤ λ ≤ +65º

Δx = -173,69, Δy = -247,71, Δz = 162,08, ω1 = -1,141“, ω2 = -2,730 8“, ω3 = 8,634 3“, Δs = 19,727 x 10-6.

1987

[HELM, “FAH-7“]

FORT­_THOMAS­_1955

FORT­_THOMAS­_1955­_ST­_KITTS­_NEVIS­_LEEWARD­_ISLANDS

97

St. Kitts, Nevis and Leeward Islands;
+16º ≤ φ ≤ +19º;
-64º ≤ λ ≤ -61º

Δx = {ΔX(m)}, Δy = {ΔY(m)}, Δz = {ΔZ(m)}, ω1 = ω2 = ω3 = 0“ : precise, Δs = 0 : precise

1955

[83502T, App. B.8, “FOT“]

GAN­_1970

GAN­_1970­_MALDIVES

99

Republic of Maldives;
-2º ≤ φ ≤ +9º;
+71º ≤ λ ≤ +75º

Δx = {ΔX(m)}, Δy = {ΔY(m)}, Δz = {ΔZ(m)}, ω1 = ω2 = ω3 = 0“ : precise, Δs = 0 : precise

1970

[83502T, App. B.9, “GAA“]

GDA­_1994

GDA­_1994­_IDENTITY­_BY­_DEFAULT

102

Australia;
-42º ≤ φ ≤ -8º;
+110º ≤ λ ≤ +155º

Δx = 0, Δy = 0, Δz = 0, ω1 = ω2 = ω3 = 0“, Δs = 0.

1994

[HELM, “GDS“]

GEODETIC­_DATUM­_1949

GEODETIC­_DATUM­_1949­_3­_NEW­_ZEALAND

103

New Zealand;
-48º ≤ φ ≤ -33º;
+165º ≤ λ ≤ +180º

Δx = {ΔX(m)}, Δy = {ΔY(m)}, Δz = {ΔZ(m)}, ω1 = ω2 = ω3 = 0“ : precise, Δs = 0 : precise

1949

[83502T, App. B.10, “GEO“]

GEODETIC­_DATUM­_1949­_7­_NEW­_ZEALAND

104

New Zealand;
-48º ≤ φ ≤ -33º;
+165º ≤ λ ≤ +180º

Δx = 59,47, Δy = -5,04, Δz = 187,44, ω1 = 0,47“, ω2 = -0,1“, ω3 = 1,024“, Δs = -4,599 3 x 10-6.

1949

[HELM, “GEO-7“]

GRACIOSA­_BASE­_SW­_1948

GRACIOSA­_BASE­_SW­_1948­_CENTRAL­_AZORES

117

Central Azores (Faial, Graciosa, Pico, Sao Jorge and Terceira Islands);
+37º ≤ φ ≤ +41º;
-30º ≤ λ ≤ -26º

Δx = {ΔX(m)}, Δy = {ΔY(m)}, Δz = {ΔZ(m)}, ω1 = ω2 = ω3 = 0“ : precise, Δs = 0 : precise

1948

[83502T, App. B.8, “GRA“]

GUAM­_1963

GUAM­_1963­_GUAM

118

Guam;
+12º ≤ φ ≤ +15º;
+143º ≤ λ ≤ +146º

Δx = {ΔX(m)}, Δy = {ΔY(m)}, Δz = {ΔZ(m)}, ω1 = ω2 = ω3 = 0“ : precise, Δs = 0 : precise

1963

[83502T, App. B.10, “GUA“]

GUNONG­_SEGARA­_1987

GUNONG­_SEGARA­_1987­_KALIMANTAN­_ISLAND

119

Kalimantan Island (Indonesia);
-6º ≤ φ ≤ +9º;
+106º ≤ λ ≤ +121º

Δx = {ΔX(m)}, Δy = {ΔY(m)}, Δz = {ΔZ(m)}, ω1 = ω2 = ω3 = 0“ : precise, Δs = 0 : precise

1987

[83502T, App. C.2, “GSE“]

GUX­_1­_1987

GUX­_1­_1987­_GUADALCANAL­_ISLAND

120

Guadalcanal Island;
-12º ≤ φ ≤ -8º;
+158º ≤ λ ≤ +163º

Δx = {ΔX(m)}, Δy = {ΔY(m)}, Δz = {ΔZ(m)}, ω1 = ω2 = ω3 = 0“ : precise, Δs = 0 : precise

1987

[83502T, App. B.10, “DOB“]

HERAT­_NORTH­_1987

HERAT­_NORTH­_1987­_AFGHANISTAN

122

Afghanistan;
+23º ≤ φ ≤ +44º;
+55º ≤ λ ≤ +81º

Δx = {ΔX(m)}, Δy = {ΔY(m)}, Δz = {ΔZ(m)}, ω1 = ω2 = ω3 = 0“ : precise, Δs = 0 : precise

1987

[83502T, App. C.2, “HEN“]

HERMANNSKOGEL­_1871

HERMANNSKOGEL­_1871­_3­_YUGOSLAVIA

123

Yugoslavia (prior to 1990), Slovenia, Croatia, Bosnia and Herzegovina, and Serbia;
+35º ≤ φ ≤ +52º;
+7º ≤ λ ≤ +29º

Δx = {ΔX(m)}, Δy = {ΔY(m)}, Δz = {ΔZ(m)}, ω1 = ω2 = ω3 = 0“ : precise, Δs = 0 : precise

1997

[83502T, App. C.2, “HER“]

HJORSEY­_1955

HJORSEY­_1955­_ICELAND

124

Iceland;
+61º ≤ φ ≤ +69º;
-24º ≤ λ ≤ -11º

Δx = -73, Δy = 46, Δz = -86, ω1 = ω2 = ω3 = 0“, Δs = 0.

1955

[83502T, App. B.5, “HJO“]

HONG­_KONG­_1963

HONG­_KONG­_1963­_HONG­_KONG

125

Hong Kong;
+21º ≤ φ ≤ +24º;
+112º ≤ λ ≤ +116º

Δx = {ΔX(m)}, Δy = {ΔY(m)}, Δz = {ΔZ(m)}, ω1 = ω2 = ω3 = 0“ : precise, Δs = 0 : precise

1963

[83502T, App. B.3, “HKD“]

HU­_TZU­_SHAN­_1991

HU­_TZU­_SHAN­_1991­_TAIWAN

126

Taiwan;
+20º ≤ φ ≤ +28º;
+117º ≤ λ ≤ +124º

Δx = {ΔX(m)}, Δy = {ΔY(m)}, Δz = {ΔZ(m)}, ω1 = ω2 = ω3 = 0“ : precise, Δs = 0 : precise

1991

[83502T, App. B.3, “HTN“]

INDIAN­_1916

INDIAN­_1916­_3­_BANGLADESH

129

Bangladesh;
+15º ≤ φ ≤ +33º;
+80º ≤ λ ≤ +100º

Δx = {ΔX(m)}, Δy = {ΔY(m)}, Δz = {ΔZ(m)}, ω1 = ω2 = ω3 = 0“ : precise, Δs = 0 : precise

1991

[83502T, App. B.3, “IND-B“]

INDIAN­_1916­_7­_BANGLADESH

130

Bangladesh;
+15º ≤ φ ≤ +33º;
+80º ≤ λ ≤ +100º

Δx = 79,2, Δy = 670,3, Δz = 230, ω1 = 0“, ω2 = 0“, ω3 = -7,274“, Δs = 11,034 x 10-6.

1916

[HELM, “IND-7“]

INDIAN­_1954

INDIAN­_1954­_THAILAND

131

Thailand;
+0º ≤ φ ≤ +27º;
+91º ≤ λ ≤ +111º

Δx = 217, Δy = 823, Δz = 299, ω1 = ω2 = ω3 = 0“, Δs = 0.

1954

[83502T, App. B.3, “INF-A“]

INDIAN­_1956

INDIAN­_1956­_INDIA­_NEPAL

132

India and Nepal;
+2º ≤ φ ≤ +44º;
+62º ≤ λ ≤ +105º

Δx = 295, Δy = 736, Δz = 257, ω1 = ω2 = ω3 = 0“, Δs = 0.

1991

[83502T, App. B.3, “IND-I“]

INDIAN­_1960

INDIAN­_1960­_CON­_SON­_ISLAND

133

Con Son Island (Vietnam);
+6º ≤ φ ≤ +11º;
+104º ≤ λ ≤ +109º

Δx = {ΔX(m)}, Δy = {ΔY(m)}, Δz = {ΔZ(m)}, ω1 = ω2 = ω3 = 0“ : precise, Δs = 0 : precise

1960

[83502T, App. B.3, “ING-B“]

INDIAN­_1960­_VIETNAM­_16­_N

134

Vietnam (near 16ºN);
+11º ≤ φ ≤ +23º;
+101º ≤ λ ≤ +115º

Δx = {ΔX(m)}, Δy = {ΔY(m)}, Δz = {ΔZ(m)}, ω1 = ω2 = ω3 = 0“ : precise, Δs = 0 : precise

1960

[83502T, App. B.3, “ING-A“]

INDIAN­_1962

INDIAN­_1962­_PAKISTAN

135

Pakistan;
+17º ≤ φ ≤ +44º;
+55º ≤ λ ≤ +81º

Δx = {ΔX(m)}, Δy = {ΔY(m)}, Δz = {ΔZ(m)}, ω1 = ω2 = ω3 = 0“ : precise, Δs = 0 : precise

1993

[83502T, App. C.2, “IND-P“]

INDIAN­_1975

INDIAN­_1975­_1991­_THAILAND

136

Thailand;
+0º ≤ φ ≤ +27º;
+91º ≤ λ ≤ +111º

Δx = 209, Δy = 818, Δz = 290, ω1 = ω2 = ω3 = 0“, Δs = 0.

1991

[83502T, App. B.3, “INH-A“]

INDIAN­_1975­_1997­_THAILAND

137

Thailand;
+0º ≤ φ ≤ +27º;
+91º ≤ λ ≤ +111º

Δx = {ΔX(m)}, Δy = {ΔY(m)}, Δz = {ΔZ(m)}, ω1 = ω2 = ω3 = 0“ : precise, Δs = 0 : precise

1997

[83502T, App. B.3, “INH-A1“]

INDONESIAN­_1974

INDONESIAN­_1974­_INDONESIA

138

Indonesia;
-16º ≤ φ ≤ +11º;
+89º ≤ λ ≤ +146º

Δx = {ΔX(m)}, Δy = {ΔY(m)}, Δz = {ΔZ(m)}, ω1 = ω2 = ω3 = 0“ : precise, Δs = 0 : precise

1974

[83502T, App. B.3, “IDN“]

IRELAND­_1965

IRELAND­_1965­_3­_IRELAND

140

Ireland;
+50º ≤ φ ≤ +57º;
-12º ≤ λ ≤ -4º

Δx = {ΔX(m)}, Δy = {ΔY(m)}, Δz = {ΔZ(m)}, ω1 = ω2 = ω3 = 0“ : precise, Δs = 0 : precise

1965

[83502T, App. B.5, “IRL“]

IRELAND­_1965­_7­_IRELAND

141

Ireland;
+50º ≤ φ ≤ +57º;
-12º ≤ λ ≤ -4º

Δx = 482,53, Δy = -130,596, Δz = 564,557, ω1 = -1,042“, ω2 = -0,214“, ω3 = -0,631“, Δs = 8,15 x 10-6.

1965

[HELM, “IRL-7“]

ISTS­_061­_1968

ISTS­_061­_1968­_SOUTH­_GEORGIA­_ISLAND

142

South Georgia Island;
-56º ≤ φ ≤ -52º;
-38º ≤ λ ≤ -34º

Δx = {ΔX(m)}, Δy = {ΔY(m)}, Δz = {ΔZ(m)}, ω1 = ω2 = ω3 = 0“ : precise, Δs = 0 : precise

1968

[83502T, App. B.8, “ISG“]

ISTS­_073­_1969

ISTS­_073­_1969­_DIEGO­_GARCIA

143

Diego Garcia;
-10º ≤ φ ≤ -4º;
+69º ≤ λ ≤ +75º

Δx = {ΔX(m)}, Δy = {ΔY(m)}, Δz = {ΔZ(m)}, ω1 = ω2 = ω3 = 0“ : precise, Δs = 0 : precise

1969

[83502T, App. B.9, “IST“]

JGD­_2000

JGD­_2000­_IDENTITY­_BY­_DEFAULT

145

Japan;
+19º ≤ φ ≤ +51º;
+119º ≤ λ ≤ +156º

Δx = Δy = Δz = 0, ω1 = ω2 = ω3 = 0“, Δs = 0.

2000

[GRFJ]

JOHNSTON­_1961

JOHNSTON­_1961­_JOHNSTON­_ISLAND

146

Johnston Island;
-46º ≤ φ ≤ -43º;
-76º ≤ λ ≤ -73º

Δx = {ΔX(m)}, Δy = {ΔY(m)}, Δz = {ΔZ(m)}, ω1 = ω2 = ω3 = 0“ : precise, Δs = 0 : precise

1961

[83502T, App. B.10, “JOH“]

KANDAWALA­_1987

KANDAWALA­_1987­_3­_SRI­_LANKA

150

Sri Lanka;
+4º ≤ φ ≤ +12º;
+77º ≤ λ ≤ +85º

Δx = {ΔX(m)}, Δy = {ΔY(m)}, Δz = {ΔZ(m)}, ω1 = ω2 = ω3 = 0“ : precise, Δs = 0 : precise

1987

[83502T, App. B.3, “KAN“]

KERGUELEN­_1949

KERGUELEN­_1949­_KERGUELEN­_ISLAND

151

Kerguelen Island;
-81º ≤ φ ≤ -74º;
+139º ≤ λ ≤ +180º

Δx = {ΔX(m)}, Δy = {ΔY(m)}, Δz = {ΔZ(m)}, ω1 = ω2 = ω3 = 0“ : precise, Δs = 0 : precise

1949

[83502T, App. B.9, “KEG“]

KERTAU­_1948

KERTAU­_1948­_3­_W­_MALAYSIA­_SINGAPORE

152

West Malaysia and Singapore;
-5º ≤ φ ≤ +12º;
+94º ≤ λ ≤ +112º

Δx = -11, Δy = 851, Δz = 5, ω1 = ω2 = ω3 = 0“, Δs = 0.

1948

[83502T, App. B.3, “KEA“]

KOREAN­_GEODETIC­_1995

KOREAN­_GEODETIC­_1995­_SOUTH­_KOREA

153

South Korea;
+27º ≤ φ ≤ +45º;
+120º ≤ λ ≤ +139º

Δx = Δy = Δz = 0, ω1 = ω2 = ω3 = 0“, Δs = 0.

2000

[83502T, App. B.3, “KGS“]

KUSAIE­_1951

KUSAIE­_1951­_CAROLINE­_ISLANDS

154

Caroline Islands (Federated States of Micronesia);
-1º ≤ φ ≤ +12º;
+134º ≤ λ ≤ +167º

Δx = {ΔX(m)}, Δy = {ΔY(m)}, Δz = {ΔZ(m)}, ω1 = ω2 = ω3 = 0“ : precise, Δs = 0 : precise

1951

[83502T, App. B.10, “KUS“]

LC5­_1961

LC5­_1961­_CAYMAN­_BRAC­_ISLAND

156

Cayman Brac Island;
+18º ≤ φ ≤ +21º;
-81º ≤ λ ≤ -78º

Δx = {ΔX(m)}, Δy = {ΔY(m)}, Δz = {ΔZ(m)}, ω1 = ω2 = ω3 = 0“ : precise, Δs = 0 : precise

1961

[83502T, App. B.8, “LCF“]

LEIGON­_1991

LEIGON­_1991­_3­_GHANA

157

Ghana;
-1º ≤ φ ≤ +17º;
-9º ≤ λ ≤ +7º

Δx = {ΔX(m)}, Δy = {ΔY(m)}, Δz = {ΔZ(m)}, ω1 = ω2 = ω3 = 0“ : precise, Δs = 0 : precise

1991

[83502T, App. B.2, “LEH“]

LEIGON­_1991­_7­_GHANA

158

Ghana;
-1º ≤ φ ≤ +17º;
-9º ≤ λ ≤ +7º

Δx = -135,58, Δy = 13,23, Δz = 364,13, ω1 = 2,016 8“, ω2 = -0,025 6“, ω3 = 0,809 1“, Δs = 0,719 x 10-6.

1991

[HELM, “LEH-7“]

LIBERIA­_1964

LIBERIA­_1964­_LIBERIA

159

Liberia;
-1º ≤ φ ≤ +14º;
-17º ≤ λ ≤ -1º

Δx = {ΔX(m)}, Δy = {ΔY(m)}, Δz = {ΔZ(m)}, ω1 = ω2 = ω3 = 0“ : precise, Δs = 0 : precise

1964

[83502T, App. B.2, “LIB“]

LUZON­_1987

LUZON­_1987­_MINDANAO­_ISLAND

160

Mindanao Island (Philippines);
+4º ≤ φ ≤ +12º;
+120º ≤ λ ≤ +128º

Δx = {ΔX(m)}, Δy = {ΔY(m)}, Δz = {ΔZ(m)}, ω1 = ω2 = ω3 = 0“ : precise, Δs = 0 : precise

1987

[83502T, App. B.10, “LUZ-B“]

LUZON­_1987­_PHILIPPINES­_EXCLUDING­_MINDANAO­_ISLAND

161

Philippines (excluding Mindanao Island);
+3º ≤ φ ≤ +23º;
+115º ≤ λ ≤ +128º

Δx = {ΔX(m)}, Δy = {ΔY(m)}, Δz = {ΔZ(m)}, ω1 = ω2 = ω3 = 0“ : precise, Δs = 0 : precise

1987

[83502T, App. B.10, “LUZ-A“]

M­_PORALOKO­_1991

M­_PORALOKO­_1991­_GABON

162

Gabon;
-10º ≤ φ ≤ +8º;
+3º ≤ λ ≤ +20º

Δx = {ΔX(m)}, Δy = {ΔY(m)}, Δz = {ΔZ(m)}, ω1 = ω2 = ω3 = 0“ : precise, Δs = 0 : precise

1991

[83502T, App. B.2, “MPO“]

MAHE­_1971

MAHE­_1971­_MAHE­_ISLAND

163

Mahe Island (Seychelles);
-6º ≤ φ ≤ -3º;
+54º ≤ λ ≤ +57º

Δx = {ΔX(m)}, Δy = {ΔY(m)}, Δz = {ΔZ(m)}, ω1 = ω2 = ω3 = 0“ : precise, Δs = 0 : precise

1971

[83502T, App. B.9, “MIK“]

MARCUS­_STATION­_1952

MARCUS­_STATION­_1952­_MARCUS­_ISLANDS

164

Marcus Islands;
+22º ≤ φ ≤ +26º;
+152º ≤ λ ≤ +156º

Δx = {ΔX(m)}, Δy = {ΔY(m)}, Δz = {ΔZ(m)}, ω1 = ω2 = ω3 = 0“ : precise, Δs = 0 : precise

1952

[83502T, App. B.10, “ASQ“]

MASS­_1999

MASS­_1999­_IDENTITY­_BY­_DEFAULT

167

Global (Earth)

Δx = Δy = Δz = 0, ω1 = ω2 = ω3 = 0“, Δs = 0.

1999

[ERNWM, Table 1, “MASS“]

MASSAWA­_1987

MASSAWA­_1987­_ERITREA­_ETHIOPIA

168

Eritrea and Ethiopia;
+7º ≤ φ ≤ +25º;
+37º ≤ λ ≤ +53º

Δx = {ΔX(m)}, Δy = {ΔY(m)}, Δz = {ΔZ(m)}, ω1 = ω2 = ω3 = 0“ : precise, Δs = 0 : precise

1987

[83502T, App. B.2, “MAS“]

MERCHICH­_1987

MERCHICH­_1987­_MOROCCO

169

Morocco;
+22º ≤ φ ≤ +42º;
-19º ≤ λ ≤ +5º

Δx = 31, Δy = 146, Δz = 47, ω1 = ω2 = ω3 = 0“, Δs = 0.

1987

[83502T, App. B.2, “MER“]

MIDWAY­_1961

MIDWAY­_1961­_MIDWAY­_ISLANDS

172

Midway Islands;
+25º ≤ φ ≤ +30º;
-180º ≤ λ ≤ -169º

Δx = {ΔX(m)}, Δy = {ΔY(m)}, Δz = {ΔZ(m)}, ω1 = ω2 = ω3 = 0“ : precise, Δs = 0 : precise

1961

[83502T, App. B.10, “MID“]

MINNA­_1991

MINNA­_1991­_CAMEROON

174

Cameroon;
-4º ≤ φ ≤ +19º;
+3º ≤ λ ≤ +23º

Δx = {ΔX(m)}, Δy = {ΔY(m)}, Δz = {ΔZ(m)}, ω1 = ω2 = ω3 = 0“ : precise, Δs = 0 : precise

1991

[83502T, App. B.2, “MIN-A“]

MINNA­_1991­_NIGERIA

175

Nigeria;
-1º ≤ φ ≤ +21º;
-4º ≤ λ ≤ +20º

Δx = -92, Δy = -93, Δz = 122, ω1 = ω2 = ω3 = 0“, Δs = 0.

1987

[83502T, App. B.2, “MIN-B“]

MM5­_1997

MM5­_1997­_IDENTITY­_BY­_DEFAULT

177

Global (Earth)

Δx = Δy = Δz = 0, ω1 = ω2 = ω3 = 0“, Δs = 0.

1997

[ERNWM, Table 1, “MM5 (AFWA)“]

MODTRAN­_MIDLATITUDE­_N­_1989

MODTRAN­_MIDLATITUDE­_N­_1989­_IDENTITY­_BY­_DEFAULT

178

Northern midlatitude regions (Earth);
+30º ≤ φ ≤ +60º;
-180º ≤ λ ≤ +180º

Δx = Δy = Δz = 0, ω1 = ω2 = ω3 = 0“, Δs = 0.

1989

[ERNWM, Table 1, “MODTRAN, Midlatitude“]

MODTRAN­_MIDLATITUDE­_S­_1989

MODTRAN­_MIDLATITUDE­_S­_1989­_IDENTITY­_BY­_DEFAULT

179

Southern midlatitude regions (Earth);
-60º ≤ φ ≤ -30º;
-180º ≤ λ ≤ +180º

Δx = Δy = Δz = 0, ω1 = ω2 = ω3 = 0“, Δs = 0.

1989

[ERNWM, Table 1, “MODTRAN, Midlatitude“]

MODTRAN­_SUBARCTIC­_N­_1989

MODTRAN­_SUBARCTIC­_N­_1989­_IDENTITY­_BY­_DEFAULT

180

Northern subarctic regions (Earth);
+60º ≤ φ ≤ +75º;
-180º ≤ λ ≤ +180º

Δx = Δy = Δz = 0, ω1 = ω2 = ω3 = 0“, Δs = 0.

1989

[ERNWM, Table 1, “MODTRAN, Subarctic“]

MODTRAN­_SUBARCTIC­_S­_1989

MODTRAN­_SUBARCTIC­_S­_1989­_IDENTITY­_BY­_DEFAULT

181

Southern subarctic regions (Earth);
-75º ≤ φ ≤ -60º;
-180º ≤ λ ≤ +180º

Δx = Δy = Δz = 0, ω1 = ω2 = ω3 = 0“, Δs = 0.

1989

[ERNWM, Table 1, “MODTRAN, Subarctic“]

MODTRAN­_TROPICAL­_1989

MODTRAN­_TROPICAL­_1989­_IDENTITY­_BY­_DEFAULT

182

Tropical regions (Earth);
-30º ≤ φ ≤ +30º;
-180º ≤ λ ≤ +180º

Δx = Δy = Δz = 0, ω1 = ω2 = ω3 = 0“, Δs = 0.

1989

[ERNWM, Table 1, “MODTRAN, Tropical“]

MONTSERRAT­_1958

MONTSERRAT­_1958­_MONTSERRAT­_LEEWARD­_ISLANDS

183

Montserrat and Leeward Islands;
+15º ≤ φ ≤ +18º;
-64º ≤ λ ≤ -61º

Δx = {ΔX(m)}, Δy = {ΔY(m)}, Δz = {ΔZ(m)}, ω1 = ω2 = ω3 = 0“ : precise, Δs = 0 : precise

1958

[83502T, App. B.8, “ASM“]

MULTIGEN­_FLAT­_EARTH­_1989

MULTIGEN­_FLAT­_EARTH­_1989­_IDENTITY­_BY­_DEFAULT

185

Global (Earth)

Δx = Δy = Δz = 0, ω1 = ω2 = ω3 = 0“, Δs = 0.

1989

[MFCG]

N­_AM­_1927

N­_AM­_1927­_ALASKA­_EXCLUDING­_ALEUTIAN­_ISLANDS

186

Alaska (excluding Aleutian Islands);
+47º ≤ φ ≤ +78º;
-175º ≤ λ ≤ -130º

Δx = -5, Δy = 135, Δz = 172, ω1 = ω2 = ω3 = 0“, Δs = 0.

1927

[83502T, App. B.6, “NAS-D“]

N­_AM­_1927­_ALBERTA­_BRITISH­_COLUMBIA

187

Canada (Alberta and British Columbia);
+43º ≤ φ ≤ +65º;
-145º ≤ λ ≤ -105º

Δx = -7, Δy = 162, Δz = 188, ω1 = ω2 = ω3 = 0“, Δs = 0.

1927

[83502T, App. B.6, “NAS-F“]

N­_AM­_1927­_BAHAMAS­_EXCLUDING­_SAN­_SALVADOR­_ISLAND

188

Bahamas (excluding San Salvador Island);
+19º ≤ φ ≤ +29º;
-83º ≤ λ ≤ -71º

Δx = -4, Δy = 154, Δz = 178, ω1 = ω2 = ω3 = 0“, Δs = 0.

1927

[83502T, App. B.6, “NAS-Q“]

N­_AM­_1927­_CANADA

189

Canada;
+36º ≤ φ ≤ +90º;
-150º ≤ λ ≤ -50º

Δx = -10, Δy = 158, Δz = 187, ω1 = ω2 = ω3 = 0“, Δs = 0.

1927

[83502T, App. B.6, “NAS-E“]

N­_AM­_1927­_CANAL­_ZONE

190

Canal Zone;
+3º ≤ φ ≤ +15º;
-86º ≤ λ ≤ -74º

Δx = {ΔX(m)}, Δy = {ΔY(m)}, Δz = {ΔZ(m)}, ω1 = ω2 = ω3 = 0“ : precise, Δs = 0 : precise

1927

[83502T, App. B.6, “NAS-O“]

N­_AM­_1927­_CARIBBEAN

191

Caribbean (Antigua Island, Barbados, Barbuda, Caicos Islands, Cuba, Dominican Republic, Grand Cayman, Jamaica and Turks Islands);
+8º ≤ φ ≤ +29º;
-87º ≤ λ ≤ -58º

Δx = -3, Δy = 142, Δz = 183, ω1 = ω2 = ω3 = 0“, Δs = 0.

1927

[83502T, App. B.6, “NAS-P“]

N­_AM­_1927­_CENTRAL­_AMERICA

192

Central America (Belize, Costa Rica, El Salvador, Guatemala, Honduras and Nicaragua);
+3º ≤ φ ≤ +25º;
-98º ≤ λ ≤ -77º

Δx = 0, Δy = 125, Δz = 194, ω1 = ω2 = ω3 = 0“, Δs = 0.

1927

[83502T, App. B.6, “NAS-N“]

N­_AM­_1927­_CONTINENTAL­_US

193

Continental United States Mean Solution;
+15º ≤ φ ≤ +60º;
-135º ≤ λ ≤ -60º

Δx = -8, Δy = 160, Δz = 176, ω1 = ω2 = ω3 = 0“, Δs = 0.

1927

[83502T, App. B.6, “NAS-C“]

N­_AM­_1927­_CUBA

194

Cuba;
+18º ≤ φ ≤ +25º;
-87º ≤ λ ≤ -72º

Δx = {ΔX(m)}, Δy = {ΔY(m)}, Δz = {ΔZ(m)}, ω1 = ω2 = ω3 = 0“ : precise, Δs = 0 : precise

1927

[83502T, App. B.6, “NAS-T“]

N­_AM­_1927­_EAST­_ALEUTIAN­_ISLANDS

195

Aleutian Islands (east of 180ºW);
+50º ≤ φ ≤ +58º;
-180º ≤ λ ≤ -161º

Δx = -2, Δy = 152, Δz = 149, ω1 = ω2 = ω3 = 0“, Δs = 0.

1927

[83502T, App. B.6, “NAS-V“]

N­_AM­_1927­_EASTERN­_CANADA

196

Eastern Canada (New Brunswick, Newfoundland, Nova Scotia and Quebec);
+38º ≤ φ ≤ +68º;
-85º ≤ λ ≤ -45º

Δx = -22, Δy = 160, Δz = 190, ω1 = ω2 = ω3 = 0“, Δs = 0.

1927

[83502T, App. B.6, “NAS-G“]

N­_AM­_1927­_EASTERN­_US

197

Eastern United States (Alabama, Connecticut, Delaware, District of Columbia, Florida, Georgia, Illinois, Indiana, Kentucky, Louisiana, Maine, Maryland, Massachusetts, Michigan, Minnesota, Mississippi, Missouri, New Hampshire, New Jersey, New York, North Carolina, Ohio, Pennsylvania, Rhode Island, South Carolina, Tennessee, Vermont, Virginia, West Virginia and Wisconsin);
+18º ≤ φ ≤ +55º;
-102º ≤ λ ≤ -60º

Δx = -9, Δy = 161, Δz = 179, ω1 = ω2 = ω3 = 0“, Δs = 0.

1927

[83502T, App. B.6, “NAS-A“]

N­_AM­_1927­_HAYES­_PENINSULA

198

Hayes Peninsula (Greenland);
+74º ≤ φ ≤ +81º;
-74º ≤ λ ≤ -56º

Δx = {ΔX(m)}, Δy = {ΔY(m)}, Δz = {ΔZ(m)}, ω1 = ω2 = ω3 = 0“ : precise, Δs = 0 : precise

1927

[83502T, App. B.6, “NAS-U“]

N­_AM­_1927­_MANITOBA­_ONTARIO

199

Canada (Manitoba and Ontario);
+36º ≤ φ ≤ +63º;
-108º ≤ λ ≤ -69º

Δx = -9, Δy = 157, Δz = 184, ω1 = ω2 = ω3 = 0“, Δs = 0.

1927

[83502T, App. B.6, “NAS-H“]

N­_AM­_1927­_MEXICO

200

Mexico;
+10º ≤ φ ≤ +38º;
-122º ≤ λ ≤ -80º

Δx = -12, Δy = 130, Δz = 190, ω1 = ω2 = ω3 = 0“, Δs = 0.

1927

[83502T, App. B.6, “NAS-L“]

N­_AM­_1927­_NW­_TERRITORIES­_SASKATCHEWAN

201

Canada (Northwest Territories and Saskatchewan);
+43º ≤ φ ≤ +90º;
-144º ≤ λ ≤ -55º

Δx = 4, Δy = 159, Δz = 188, ω1 = ω2 = ω3 = 0“, Δs = 0.

1927

[83502T, App. B.6, “NAS-I“]

N­_AM­_1927­_SAN­_SALVADOR­_ISLAND

202

San Salvador Island;
+23º ≤ φ ≤ +26º;
-75º ≤ λ ≤ -74º

Δx = {ΔX(m)}, Δy = {ΔY(m)}, Δz = {ΔZ(m)}, ω1 = ω2 = ω3 = 0“ : precise, Δs = 0 : precise

1927

[83502T, App. B.6, “NAS-R“]

N­_AM­_1927­_WEST­_ALEUTIAN­_ISLANDS

203

Aleutian Islands (west of 180ºW);
+50º ≤ φ ≤ +58º;
+169º ≤ λ ≤ +180º

Δx = {ΔX(m)}, Δy = {ΔY(m)}, Δz = {ΔZ(m)}, ω1 = ω2 = ω3 = 0“ : precise, Δs = 0 : precise

1927

[83502T, App. B.6, “NAS-W“]

N­_AM­_1927­_WESTERN­_US

204

Western United States (Arizona, Arkansas, California, Colorado, Idaho, Iowa, Kansas, Montana, Nebraska, Nevada, New Mexico, North Dakota, Oklahoma, Oregon, South Dakota, Texas, Utah, Washington and Wyoming);
+19º ≤ φ ≤ +55º;
-132º ≤ λ ≤ -87º

Δx = -8, Δy = 159, Δz = 175, ω1 = ω2 = ω3 = 0“, Δs = 0.

1927

[83502T, App. B.6, “NAS-B“]

N­_AM­_1927­_YUKON

205

Canada (Yukon);
+53º ≤ φ ≤ +75º;
-147º ≤ λ ≤ -117º

Δx = -7, Δy = 139, Δz = 181, ω1 = ω2 = ω3 = 0“, Δs = 0.

1927

[83502T, App. B.6, “NAS-J“]

N­_AM­_1983

N­_AM­_1983­_ALASKA­_EXCLUDING­_ALEUTIAN­_ISLANDS

206

Alaska (excluding Aleutian Islands);
+48º ≤ φ ≤ +78º;
-175º ≤ λ ≤ -135º

Δx = Δy = Δz = 0, ω1 = ω2 = ω3 = 0“, Δs = 0.

1983

[83502T, App. B.6, “NAR-A“]

N­_AM­_1983­_ALEUTIAN­_ISLANDS

207

Aleutian Islands;
+51º ≤ φ ≤ +74º;
-180º ≤ λ ≤ +180º

Δx = {ΔX(m)}, Δy = {ΔY(m)}, Δz = {ΔZ(m)}, ω1 = ω2 = ω3 = 0“ : precise, Δs = 0 : precise

1983

[83502T, App. B.6, “NAR-E“]

N­_AM­_1983­_CANADA

208

Canada;
+36º ≤ φ ≤ +90º;
-150º ≤ λ ≤ -50º

Δx = Δy = Δz = 0, ω1 = ω2 = ω3 = 0“, Δs = 0.

1983

[83502T, App. B.6, “NAR-B“]

N­_AM­_1983­_CONTINENTAL­_US

209

Continental United States;
+15º ≤ φ ≤ +60º;
-135º ≤ λ ≤ -60º

Δx = Δy = Δz = 0, ω1 = ω2 = ω3 = 0“, Δs = 0.

1983

[83502T, App. B.6, “NAR-C“]

N­_AM­_1983­_HAWAII

210

Hawaii;
+17º ≤ φ ≤ +24º;
-164º ≤ λ ≤ -153º

Δx = 1, Δy = 1, Δz = -1, ω1 = ω2 = ω3 = 0“, Δs = 0.

1983

[83502T, App. B.6, “NAR-H“]

N­_AM­_1983­_MEXICO­_CENTRAL­_AMERICA

211

Mexico and Central America;
+11º ≤ φ ≤ +35º;
-122º ≤ λ ≤ -72º

Δx = Δy = Δz = 0, ω1 = ω2 = ω3 = 0“, Δs = 0.

1983

[83502T, App. B.6, “NAR-D“]

N­_SAHARA­_1959

N­_SAHARA­_1959­_ALGERIA

212

Algeria;
+13º ≤ φ ≤ +43º;
-15º ≤ λ ≤ +11º

Δx = {ΔX(m)}, Δy = {ΔY(m)}, Δz = {ΔZ(m)}, ω1 = ω2 = ω3 = 0“ : precise, Δs = 0 : precise

1959

[83502T, App. B.2, “NSD“]

NAHRWAN­_1987

NAHRWAN­_1987­_MASIRAH­_ISLAND

213

Masirah Island (Oman);
+19º ≤ φ ≤ +22º;
+57º ≤ λ ≤ +60º

Δx = {ΔX(m)}, Δy = {ΔY(m)}, Δz = {ΔZ(m)}, ω1 = ω2 = ω3 = 0“ : precise, Δs = 0 : precise

1987

[83502T, App. B.3, “NAH-A“]

NAHRWAN­_1987­_SAUDI­_ARABIA

214

Saudi Arabia;
+8º ≤ φ ≤ +38º;
+28º ≤ λ ≤ +62º

Δx = {ΔX(m)}, Δy = {ΔY(m)}, Δz = {ΔZ(m)}, ω1 = ω2 = ω3 = 0“ : precise, Δs = 0 : precise

1991

[83502T, App. B.3, “NAH-C“]

NAHRWAN­_1987­_UNITED­_ARAB­_EMIRATES

215

United Arab Emirates;
+17º ≤ φ ≤ +32º;
+45º ≤ λ ≤ +62º

Δx = {ΔX(m)}, Δy = {ΔY(m)}, Δz = {ΔZ(m)}, ω1 = ω2 = ω3 = 0“ : precise, Δs = 0 : precise

1987

[83502T, App. B.3, “NAH-B“]

NAPARIMA­_1991

NAPARIMA­_1991­_TRINIDAD­_TOBAGO

217

Trinidad and Tobago (British West Indies);
+8º ≤ φ ≤ +13º;
-64º ≤ λ ≤ -59º

Δx = {ΔX(m)}, Δy = {ΔY(m)}, Δz = {ΔZ(m)}, ω1 = ω2 = ω3 = 0“ : precise, Δs = 0 : precise

1991

[83502T, App. B.8, “NAP“]

NOGAPS­_1988

NOGAPS­_1988­_IDENTITY­_BY­_DEFAULT

220

Global (Earth)

Δx = Δy = Δz = 0, ω1 = ω2 = ω3 = 0“, Δs = 0.

1988

[ERNWM, Table 1, “NOGAPS“]

NTF_1896

NTF_1896_FRANCE

221

France;
+42º ≤ φ ≤ +52º;
-6º ≤ λ ≤ +10º

Δx = -168, Δy = -60, Δz = 320, ω1 = ω2 = ω3 = 0“, Δs = 0.

1896

[HELM, “NFR“]

NTF_1896_PM_PARIS

NTF_1896_PM_PARIS_FRANCE

222

France;
+42º ≤ φ ≤ +52º;
-8º ≤ λ ≤ +8º

Δx = -168, Δy = -60, Δz = 320, ω1 = 0“, ω2 = 0“, ω3 = 8414,025“, Δs = 8,15 x 10-6.
Note: The referenced z-axis rotation has been offset so that Paris is contained in the x-positive xz-plane.

1896

[HELM, “NFR“]

OBSERV­_METEORO­_1939

OBSERV­_METEORO­_1939­_CORVO­_FLORES­_ISLANDS

224

Corvo Flores Islands (Azores);
+38º ≤ φ ≤ +41º;
-33º ≤ λ ≤ -30º

Δx = {ΔX(m)}, Δy = {ΔY(m)}, Δz = {ΔZ(m)}, ω1 = ω2 = ω3 = 0“ : precise, Δs = 0 : precise

1939

[83502T, App. B.8, “FLO“]

OLD­_EGYPTIAN­_1907

OLD­_EGYPTIAN­_1907­_EGYPT

225

Egypt;
+16º ≤ φ ≤ +38º;
+19º ≤ λ ≤ +42º

Δx = {ΔX(m)}, Δy = {ΔY(m)}, Δz = {ΔZ(m)}, ω1 = ω2 = ω3 = 0“ : precise, Δs = 0 : precise

1907

[83502T, App. B.2, “OEG“]

OLD­_HAWAIIAN­_CLARKE­_1987

OLD­_HAWAIIAN­_CLARKE­_1987­_HAWAII

226

Hawaii (US);
+17º ≤ φ ≤ +22º;
-158º ≤ λ ≤ -153º

Δx = {ΔX(m)}, Δy = {ΔY(m)}, Δz = {ΔZ(m)}, ω1 = ω2 = ω3 = 0“ : precise, Δs = 0 : precise

1991

[83502T, App. B.10, “OHA-A“]

OLD­_HAWAIIAN­_CLARKE­_1987­_KAUAI

227

Kauai (US);
+20º ≤ φ ≤ +24º;
-161º ≤ λ ≤ -158º

Δx = {ΔX(m)}, Δy = {ΔY(m)}, Δz = {ΔZ(m)}, ω1 = ω2 = ω3 = 0“ : precise, Δs = 0 : precise

1991

[83502T, App. B.10, “OHA-B“]

OLD­_HAWAIIAN­_CLARKE­_1987­_MAUI

228

Maui (US);
+19º ≤ φ ≤ +23º;
-158º ≤ λ ≤ -154º

Δx = {ΔX(m)}, Δy = {ΔY(m)}, Δz = {ΔZ(m)}, ω1 = ω2 = ω3 = 0“ : precise, Δs = 0 : precise

1991

[83502T, App. B.10, “OHA-C“]

OLD­_HAWAIIAN­_CLARKE­_1987­_MEAN­_SOLUTION

229

Mean Solution (Hawaii (US));
+17º ≤ φ ≤ +24º;
-164º ≤ λ ≤ -153º

Δx = 61, Δy = -285, Δz = -181, ω1 = ω2 = ω3 = 0“, Δs = 0.

1987

[83502T, App. B.10, “OHA-M“]

OLD­_HAWAIIAN­_CLARKE­_1987­_OAHU

230

Oahu (US);
+20º ≤ φ ≤ +23º;
-160º ≤ λ ≤ -156º

Δx = 58, Δy = -283, Δz = -182, ω1 = ω2 = ω3 = 0“, Δs = 0.

1991

[83502T, App. B.10, “OHA-D“]

OLD­_HAWAIIAN­_INT­_1987

OLD­_HAWAIIAN­_INT­_1987­_HAWAII

231

Hawaii (US);
+17º ≤ φ ≤ +22º;
-158º ≤ λ ≤ -153º

Δx = 229, Δy = -222, Δz = -348, ω1 = ω2 = ω3 = 0“, Δs = 0.

2000

[83502T, App. B.10, “OHI-A“]

OLD­_HAWAIIAN­_INT­_1987­_KAUAI

232

Kauai (US);
+20º ≤ φ ≤ +24º;
-161º ≤ λ ≤ -158º

Δx = {ΔX(m)}, Δy = {ΔY(m)}, Δz = {ΔZ(m)}, ω1 = ω2 = ω3 = 0“ : precise, Δs = 0 : precise

2000

[83502T, App. B.10, “OHI-B“]

OLD­_HAWAIIAN­_INT­_1987­_MAUI

233

Maui (US);
+19º ≤ φ ≤ +23º;
-158º ≤ λ ≤ -154º

Δx = {ΔX(m)}, Δy = {ΔY(m)}, Δz = {ΔZ(m)}, ω1 = ω2 = ω3 = 0“ : precise, Δs = 0 : precise

2000

[83502T, App. B.10, “OHI-C“]

OLD­_HAWAIIAN­_INT­_1987­_MEAN­_SOLUTION

234

Mean Solution (Hawaii (US));
+17º ≤ φ ≤ +24º;
-164º ≤ λ ≤ -153º

Δx = {ΔX(m)}, Δy = {ΔY(m)}, Δz = {ΔZ(m)}, ω1 = ω2 = ω3 = 0“ : precise, Δs = 0 : precise

2000

[83502T, App. B.10, “OHI-M“]

OLD­_HAWAIIAN­_INT­_1987­_OAHU

235

Oahu (US);
+20º ≤ φ ≤ +23º;
-160º ≤ λ ≤ -156º

Δx = 198, Δy = -226, Δz = -347, ω1 = ω2 = ω3 = 0“, Δs = 0.

2000

[83502T, App. B.10, “OHI-D“]

OSGB­_1936

OSGB­_1936­_3­_MEAN­_SOLUTION

237

Mean Solution (England, Isle of Man, Scotland, Shetland, and Wales);
+44º ≤ φ ≤ +66º;
-14º ≤ λ ≤ +7º

Δx = {ΔX(m)}, Δy = {ΔY(m)}, Δz = {ΔZ(m)}, ω1 = ω2 = ω3 = 0“ : precise, Δs = 0 : precise

1936

[83502T, App. B.5, “OGB-M“]

OSGB­_1936­_7­_GREAT­_BRITAIN

238

Great Britain;
+49º ≤ φ ≤ +60º;
-9º ≤ λ ≤ +3º

Δx = -446,448, Δy = -125,157, Δz = 542,06, ω1 = 0,15“, ω2 = 0,247“, ω3 = 0,8421“, Δs = -20,49 x 10-6.

1936

[HELM, “OGB-7“]

OSGB­_1936­_ENGLAND

239

England;
+44º ≤ φ ≤ +61º;
-12º ≤ λ ≤ +7º

Δx = {ΔX(m)}, Δy = {ΔY(m)}, Δz = {ΔZ(m)}, ω1 = ω2 = ω3 = 0“ : precise, Δs = 0 : precise

1936

[83502T, App. B.5, “OGB-A“]

OSGB­_1936­_ENGLAND­_ISLE­_OF­_MAN­_WALES

240

England, Isle of Man, and Wales;
+44º ≤ φ ≤ +61º;
-12º ≤ λ ≤ +7º

Δx = {ΔX(m)}, Δy = {ΔY(m)}, Δz = {ΔZ(m)}, ω1 = ω2 = ω3 = 0“ : precise, Δs = 0 : precise

1936

[83502T, App. B.5, “OGB-B“]

OSGB­_1936­_SCOTLAND­_SHETLAND­_ISLANDS

241

Scotland and Shetland Islands;
+49º ≤ φ ≤ +66º;
-14º ≤ λ ≤ +4º

Δx = {ΔX(m)}, Δy = {ΔY(m)}, Δz = {ΔZ(m)}, ω1 = ω2 = ω3 = 0“ : precise, Δs = 0 : precise

1936

[83502T, App. B.5, “OGB-C“]

OSGB­_1936­_WALES

242

Wales;
+46º ≤ φ ≤ +59º;
-11º ≤ λ ≤ +3º

Δx = {ΔX(m)}, Δy = {ΔY(m)}, Δz = {ΔZ(m)}, ω1 = ω2 = ω3 = 0“ : precise, Δs = 0 : precise

1936

[83502T, App. B.5, “OGB-D“]

PICO­_DE­_LAS­_NIEVES­_1987

PICO­_DE­_LAS­_NIEVES­_1987­_CANARY­_ISLANDS

247

Canary Islands (Spain);
+26º ≤ φ ≤ +31º;
-20º ≤ λ ≤ -12º

Δx = {ΔX(m)}, Δy = {ΔY(m)}, Δz = {ΔZ(m)}, ω1 = ω2 = ω3 = 0“ : precise, Δs = 0 : precise

1987

[83502T, App. B.8, “PLN“]

PITCAIRN­_1967

PITCAIRN­_1967­_PITCAIRN­_ISLAND

248

Pitcairn Island;
-27º ≤ φ ≤ -21º;
-134º ≤ λ ≤ -119º

Δx = {ΔX(m)}, Δy = {ΔY(m)}, Δz = {ΔZ(m)}, ω1 = ω2 = ω3 = 0“ : precise, Δs = 0 : precise

1967

[83502T, App. B.10, “PIT“]

POINT­_58­_1991

POINT­_58­_1991­_MEAN­_SOLUTION

250

Mean Solution (Burkina Faso and Niger);
+0º ≤ φ ≤ +10º;
-15º ≤ λ ≤ +25º

Δx = {ΔX(m)}, Δy = {ΔY(m)}, Δz = {ΔZ(m)}, ω1 = ω2 = ω3 = 0“ : precise, Δs = 0 : precise

1991

[83502T, App. B.2, “PTB“]

POINTE­_NOIRE­_1948

POINTE­_NOIRE­_1948­_CONGO

251

Congo;
-11º ≤ φ ≤ +10º;
+5º ≤ λ ≤ +25º

Δx = {ΔX(m)}, Δy = {ΔY(m)}, Δz = {ΔZ(m)}, ω1 = ω2 = ω3 = 0“ : precise, Δs = 0 : precise

1948

[83502T, App. B.2, “PTN“]

PORTO­_SANTO­_1936

PORTO­_SANTO­_1936­_PORTO­_SANTO­_MADEIRA­_ISLANDS

253

Porto Santo and Madeira Islands;
+31º ≤ φ ≤ +35º;
-18º ≤ λ ≤ -15º

Δx = {ΔX(m)}, Δy = {ΔY(m)}, Δz = {ΔZ(m)}, ω1 = ω2 = ω3 = 0“ : precise, Δs = 0 : precise

1936

[83502T, App. B.8, “POS“]

PROV­_S­_AM­_1956

PROV­_S­_AM­_1956­_3­_VENEZUELA

256

Venezuela;
-5º ≤ φ ≤ +18º;
-79º ≤ λ ≤ -54º

Δx = {ΔX(m)}, Δy = {ΔY(m)}, Δz = {ΔZ(m)}, ω1 = ω2 = ω3 = 0“ : precise, Δs = 0 : precise

1956

[83502T, App. B.7, “PRP-H“]

PROV­_S­_AM­_1956­_7­_VENEZUELA

257

Venezuela;
-5º ≤ φ ≤ +18º;
-79º ≤ λ ≤ -54º

Δx = -197,43, Δy = 139,39, Δz = -192,8, ω1 = 5,266“, ω2 = 1,238“, ω3 = -2,381“, Δs = -5,109 x 10-6.

1956

[HELM, “PRP-7“]

PROV­_S­_AM­_1956­_BOLIVIA

258

Bolivia;
-28º ≤ φ ≤ -4º;
-75º ≤ λ ≤ -51º

Δx = {ΔX(m)}, Δy = {ΔY(m)}, Δz = {ΔZ(m)}, ω1 = ω2 = ω3 = 0“ : precise, Δs = 0 : precise

1956

[83502T, App. B.7, “PRP-A“]

PROV­_S­_AM­_1956­_COLOMBIA

259

Colombia;
-10º ≤ φ ≤ +16º;
-85º ≤ λ ≤ -61º

Δx = {ΔX(m)}, Δy = {ΔY(m)}, Δz = {ΔZ(m)}, ω1 = ω2 = ω3 = 0“ : precise, Δs = 0 : precise

1956

[83502T, App. B.7, “PRP-D“]

PROV­_S­_AM­_1956­_ECUADOR

260

Ecuador;
-11º ≤ φ ≤ +7º;
-85º ≤ λ ≤ -70º

Δx = -278, Δy = 171, Δz = -367, ω1 = ω2 = ω3 = 0“, Δs = 0.

1956

[83502T, App. B.7, “PRP-E“]

PROV­_S­_AM­_1956­_GUYANA

261

Guyana;
-4º ≤ φ ≤ +14º;
-67º ≤ λ ≤ -51º

Δx = -298, Δy = 159, Δz = -369, ω1 = ω2 = ω3 = 0“, Δs = 0.

1956

[83502T, App. B.7, “PRP-F“]

PROV­_S­_AM­_1956­_MEAN­_SOLUTION

262

Mean Solution (Bolivia, Chile, Colombia, Ecuador, Guyana, Peru and Venezuela);
-64º ≤ φ ≤ +18º;
-87º ≤ λ ≤ -51º

Δx = -288, Δy = 175, Δz = -376, ω1 = ω2 = ω3 = 0“, Δs = 0.

1956

[83502T, App. B.7, “PRP-M“]

PROV­_S­_AM­_1956­_N­_CHILE­_19­_S

263

Northern Chile (near 19ºS);
-45º ≤ φ ≤ -12º;
-83º ≤ λ ≤ -60º

Δx = {ΔX(m)}, Δy = {ΔY(m)}, Δz = {ΔZ(m)}, ω1 = ω2 = ω3 = 0“ : precise, Δs = 0 : precise

1956

[83502T, App. B.7, “PRP-B“]

PROV­_S­_AM­_1956­_PERU

264

Peru;
-24º ≤ φ ≤ +5º;
-87º ≤ λ ≤ -63º

Δx = -279, Δy = 175, Δz = -379, ω1 = ω2 = ω3 = 0“, Δs = 0.

1956

[83502T, App. B.7, “PRP-G“]

PROV­_S­_AM­_1956­_S­_CHILE­_43­_S

265

Southern Chile (near 43ºS);
-64º ≤ φ ≤ -20º;
-83º ≤ λ ≤ -60º

Δx = {ΔX(m)}, Δy = {ΔY(m)}, Δz = {ΔZ(m)}, ω1 = ω2 = ω3 = 0“ : precise, Δs = 0 : precise

1956

[83502T, App. B.7, “PRP-C“]

PROV­_S­_CHILEAN­_1963

PROV­_S­_CHILEAN­_1963­_SOUTH­_CHILE

266

South Chile (near 53ºS);
-64º ≤ φ ≤ -25º;
-83º ≤ λ ≤ -60º

Δx = {ΔX(m)}, Δy = {ΔY(m)}, Δz = {ΔZ(m)}, ω1 = ω2 = ω3 = 0“ : precise, Δs = 0 : precise

1963

[83502T, App. B.7, “HIT“]

PUERTO­_RICO­_1987

PUERTO­_RICO­_1987­_PUERTO­_RICO­_VIRGIN­_ISLANDS

268

Puerto Rico and Virgin Islands;
+16º ≤ φ ≤ +20º;
-69º ≤ λ ≤ -63º

Δx = 11, Δy = 72, Δz = -101, ω1 = ω2 = ω3 = 0“, Δs = 0.

1987

[83502T, App. B.8, “PUR“]

PULKOVO­_1942

PULKOVO­_1942­_RUSSIA

269

Russia;
+36º ≤ φ ≤ +89º;
-180º ≤ λ ≤ +180º

Δx = {ΔX(m)}, Δy = {ΔY(m)}, Δz = {ΔZ(m)}, ω1 = ω2 = ω3 = 0“ : precise, Δs = 0 : precise

1942

[83502T, App. C.2, “PUK“]

QATAR­_NATIONAL­_1974

QATAR­_NATIONAL­_1974­_3­_QATAR

270

Qatar;
+19º ≤ φ ≤ +32º;
+45º ≤ λ ≤ +57º

Δx = {ΔX(m)}, Δy = {ΔY(m)}, Δz = {ΔZ(m)}, ω1 = ω2 = ω3 = 0“ : precise, Δs = 0 : precise

1987

[83502T, App. B.3, “QAT“]

QORNOQ­_1987

QORNOQ­_1987­_SOUTH­_GREENLAND

271

South Greenland;
+57º ≤ φ ≤ +85º;
-77º ≤ λ ≤ -7º

Δx = {ΔX(m)}, Δy = {ΔY(m)}, Δz = {ΔZ(m)}, ω1 = ω2 = ω3 = 0“ : precise, Δs = 0 : precise

1987

[83502T, App. B.8, “QUO“]

REUNION­_1947

REUNION­_1947­_MASCARENE­_ISLANDS

272

Mascarene Islands;
-27º ≤ φ ≤ -12º;
+47º ≤ λ ≤ +65º

Δx = {ΔX(m)}, Δy = {ΔY(m)}, Δz = {ΔZ(m)}, ω1 = ω2 = ω3 = 0“ : precise, Δs = 0 : precise

1947

[83502T, App. B.9, “REU“]

RGF­_1993

RGF­_1993­_IDENTITY­_BY­_MEASUREMENT

273

France;
+42º ≤ φ ≤ +52º;
-6º ≤ λ ≤ +10º

Δx = Δy = Δz = 0, ω1 = ω2 = ω3 = 2º 20′ 14,025“, Δs = 0.
Note: The referenced z-axis rotation has been offset so that Paris is contained in the x-positive xz-plane.

1993

[RGF]

ROME­_1940

ROME­_1940­_SARDINIA

276

Sardinia (Italy);
+37º ≤ φ ≤ +43º;
+6º ≤ λ ≤ +12º

Δx = {ΔX(m)}, Δy = {ΔY(m)}, Δz = {ΔZ(m)}, ω1 = ω2 = ω3 = 0“ : precise, Δs = 0 : precise

1940

[83502T, App. B.5, “MOD“]

ROME­_1940­_PM­_ROME

ROME­_1940­_PM­_ROME­_SARDINIA

275

Sardinia (Italy);
+37º ≤ φ ≤ +43º;
-8º ≤ λ ≤ +8º

Δx = {ΔX(m)}, Δy = {ΔY(m)}, Δz = {ΔZ(m)}, ω1 = ω2 = 0“ : precise, ω3 = 12º 27′ 8,4“ : assumed precise, Δs = 0 : precise
Note: The referenced z-axis rotation has been offset so that Rome is contained in the x-positive xz-plane.

1940

[83502T, App. B.5, “MOD“]

S­_AM­_1969

S­_AM­_1969­_ARGENTINA

278

Argentina;
-62º ≤ φ ≤ -23º;
-76º ≤ λ ≤ -47º

Δx = -62, Δy = -1, Δz = -37, ω1 = ω2 = ω3 = 0“, Δs = 0.

1969

[83502T, App. B.7, “SAN-A“]

S­_AM­_1969­_BALTRA­_GALAPAGOS­_ISLANDS

279

Baltra and Galapagos Islands (Ecuador);
-2º ≤ φ ≤ +1º;
-92º ≤ λ ≤ -89º

Δx = {ΔX(m)}, Δy = {ΔY(m)}, Δz = {ΔZ(m)}, ω1 = ω2 = ω3 = 0“ : precise, Δs = 0 : precise

1969

[83502T, App. B.7, “SAN-J“]

S­_AM­_1969­_BOLIVIA

280

Bolivia;
-28º ≤ φ ≤ -4º;
-75º ≤ λ ≤ -51º

Δx = {ΔX(m)}, Δy = {ΔY(m)}, Δz = {ΔZ(m)}, ω1 = ω2 = ω3 = 0“ : precise, Δs = 0 : precise

1969

[83502T, App. B.7, “SAN-B“]

S­_AM­_1969­_BRAZIL

281

Brazil;
-39º ≤ φ ≤ -2º;
-80º ≤ λ ≤ -29º

Δx = -60, Δy = -2, Δz = -41, ω1 = ω2 = ω3 = 0“, Δs = 0.

1969

[83502T, App. B.7, “SAN-C“]

S­_AM­_1969­_CHILE

282

Chile;
-64º ≤ φ ≤ -12º;
-83º ≤ λ ≤ -60º

Δx = -75, Δy = -1, Δz = -44, ω1 = ω2 = ω3 = 0“, Δs = 0.

1969

[83502T, App. B.7, “SAN-D“]

S­_AM­_1969­_COLOMBIA

283

Colombia;
-10º ≤ φ ≤ +16º;
-85º ≤ λ ≤ -61º

Δx = -44, Δy = 6, Δz = -36, ω1 = ω2 = ω3 = 0“, Δs = 0.

1969

[83502T, App. B.7, “SAN-E“]

S­_AM­_1969­_ECUADOR­_EXCLUDING­_GALAPAGOS­_ISLANDS

284

Ecuador (excluding Galapagos Islands);
-11º ≤ φ ≤ +7º;
-85º ≤ λ ≤ -70º

Δx = -48, Δy = 3, Δz = -44, ω1 = ω2 = ω3 = 0“, Δs = 0.

1969

[83502T, App. B.7, “SAN-F“]

S­_AM­_1969­_GUYANA

285

Guyana;
-4º ≤ φ ≤ +14º;
-67º ≤ λ ≤ -51º

Δx = {ΔX(m)}, Δy = {ΔY(m)}, Δz = {ΔZ(m)}, ω1 = ω2 = ω3 = 0“ : precise, Δs = 0 : precise

1969

[83502T, App. B.7, “SAN-G“]

S­_AM­_1969­_MEAN­_SOLUTION

286

Mean Solution (Argentina, Bolivia, Brazil, Chile, Colombia, Ecuador, Guyana, Paraguay, Peru, Trinidad and Tobago, and Venezuela);
-65º ≤ φ ≤ -50º;
-90º ≤ λ ≤ -25º

Δx = -57, Δy = 1, Δz = -41, ω1 = ω2 = ω3 = 0“, Δs = 0.

1969

[83502T, App. B.7, “SAN-M“]

S­_AM­_1969­_PARAGUAY

287

Paraguay;
-33º ≤ φ ≤ -14º;
-69º ≤ λ ≤ -49º

Δx = {ΔX(m)}, Δy = {ΔY(m)}, Δz = {ΔZ(m)}, ω1 = ω2 = ω3 = 0“ : precise, Δs = 0 : precise

1969

[83502T, App. B.7, “SAN-H“]

S­_AM­_1969­_PERU

288

Peru;
-24º ≤ φ ≤ +5º;
-87º ≤ λ ≤ -63º

Δx = -58, Δy = 0, Δz = -44, ω1 = ω2 = ω3 = 0“, Δs = 0.

1969

[83502T, App. B.7, “SAN-I“]

S­_AM­_1969­_TRINIDAD­_TOBAGO

289

Trinidad and Tobago (British West Indies);
+4º ≤ φ ≤ +17º;
-68º ≤ λ ≤ -55º

Δx = {ΔX(m)}, Δy = {ΔY(m)}, Δz = {ΔZ(m)}, ω1 = ω2 = ω3 = 0“ : precise, Δs = 0 : precise

1969

[83502T, App. B.7, “SAN-K“]

S­_AM­_1969­_VENEZUELA

290

Venezuela;
-5º ≤ φ ≤ +18º;
-79º ≤ λ ≤ -54º

Δx = {ΔX(m)}, Δy = {ΔY(m)}, Δz = {ΔZ(m)}, ω1 = ω2 = ω3 = 0“ : precise, Δs = 0 : precise

1969

[83502T, App. B.7, “SAN-L“]

S­_ASIA­_1987

S­_ASIA­_1987­_SINGAPORE

291

Singapore;
+0º ≤ φ ≤ +3º;
+102º ≤ λ ≤ +106º

Δx = {ΔX(m)}, Δy = {ΔY(m)}, Δz = {ΔZ(m)}, ω1 = ω2 = ω3 = 0“ : precise, Δs = 0 : precise

1987

[83502T, App. B.3, “SOA“]

S­_JTSK­_1993

S­_JTSK­_1993­_CZECH­_REPUBLIC

292

Czech Republic;
+47º ≤ φ ≤ +52º;
+11º ≤ λ ≤ +20º

Δx = 570,8, Δy = 85,7, Δz = 462,8, ω1 = 4,998“, ω2 = 1,587“, ω3 = 5,261“, Δs = 3,56 x 10-6.

1993

[HELM, “CCD-7“, “Czech Republic“]

S­_JTSK­_1993­_CZECH­_REPUBLIC­_SLOVAKIA

293

Czech Republic and Slovakia;
+43º ≤ φ ≤ +56º;
+6º ≤ λ ≤ +28º

Δx = {ΔX(m)}, Δy = {ΔY(m)}, Δz = {ΔZ(m)}, ω1 = ω2 = ω3 = 0“ : precise, Δs = 0 : precise

1993

[83502T, App. B.5, “CCD“]

S42­_PULKOVO

S42­_PULKOVO­_3­_POLAND

294

Poland;
+43º ≤ φ ≤ +60º;
+8º ≤ λ ≤ +30º

Δx = 23, Δy = -124, Δz = -82, ω1 = ω2 = ω3 = 0“, Δs = 0.

1942

[83502T, App. B.5, “SPK-B“]

S42­_PULKOVO­_ALBANIA

295

Albania;
+34º ≤ φ ≤ +48º;
+14º ≤ λ ≤ +26º

Δx = 24, Δy = -130, Δz = -92, ω1 = ω2 = ω3 = 0“, Δs = 0.

1942

[83502T, App. B.5, “SPK-F“]

S42­_PULKOVO­_CZECH­_REPUBLIC­_SLOVAKIA

296

Czech Republic and Slovakia;
+42º ≤ φ ≤ +57º;
+6º ≤ λ ≤ +28º

Δx = 26, Δy = -121, Δz = -78, ω1 = ω2 = ω3 = 0“, Δs = 0.

1942

[83502T, App. B.5, “SPK-C“]

S42­_PULKOVO­_G­_ROMANIA

297

Romania;
+38º ≤ φ ≤ +54º;
+15º ≤ λ ≤ +35º

Δx = {ΔX(m)}, Δy = {ΔY(m)}, Δz = {ΔZ(m)}, ω1 = ω2 = ω3 = 0“ : precise, Δs = 0 : precise

1942

[83502T, App. B.5, “SPK-G“]

S42­_PULKOVO­_HUNGARY

298

Hungary;
+40º ≤ φ ≤ +54º;
+11º ≤ λ ≤ +29º

Δx = {ΔX(m)}, Δy = {ΔY(m)}, Δz = {ΔZ(m)}, ω1 = ω2 = ω3 = 0“ : precise, Δs = 0 : precise

1942

[83502T, App. B.5, “SPK-A“]

S42­_PULKOVO­_KAZAKHSTAN

299

Kazakhstan;
+35º ≤ φ ≤ +62º;
+41º ≤ λ ≤ +93º

Δx = {ΔX(m)}, Δy = {ΔY(m)}, Δz = {ΔZ(m)}, ω1 = ω2 = ω3 = 0“ : precise, Δs = 0 : precise

1942

[83502T, App. B.5, “SPK-E“]

S42­_PULKOVO­_LATVIA

300

Latvia;
+50º ≤ φ ≤ +64º;
+15º ≤ λ ≤ +34º

Δx = {ΔX(m)}, Δy = {ΔY(m)}, Δz = {ΔZ(m)}, ω1 = ω2 = ω3 = 0“ : precise, Δs = 0 : precise

1942

[83502T, App. B.5, “SPK-D“]

SANTO­_DOS­_1965

SANTO­_DOS­_1965­_ESPIRITO­_SANTO­_ISLAND

301

Espirito Santo Island (Vanuatu);
-17º ≤ φ ≤ -13º;
+160º ≤ λ ≤ +169º

Δx = {ΔX(m)}, Δy = {ΔY(m)}, Δz = {ΔZ(m)}, ω1 = ω2 = ω3 = 0“ : precise, Δs = 0 : precise

1965

[83502T, App. B.10, “SAE“]

SAO­_BRAZ­_1987

SAO­_BRAZ­_1987­_SAO­_MIGUEL­_SANTA­_MARIA­_ISLANDS

302

Sao Miguel and Santa Maria Islands (Azores);
+35º ≤ φ ≤ +39º;
-27º ≤ λ ≤ -23º

Δx = {ΔX(m)}, Δy = {ΔY(m)}, Δz = {ΔZ(m)}, ω1 = ω2 = ω3 = 0“ : precise, Δs = 0 : precise

1987

[83502T, App. B.8, “SAO“]

SAPPER­_HILL­_1943

SAPPER­_HILL­_1943­_3­_E­_FALKLAND­_ISLANDS

303

East Falkland Islands;
-54º ≤ φ ≤ -50º;
-61º ≤ λ ≤ -56º

Δx = {ΔX(m)}, Δy = {ΔY(m)}, Δz = {ΔZ(m)}, ω1 = ω2 = ω3 = 0“ : precise, Δs = 0 : precise

1943

[83502T, App. B.8, “SAP“]

SCHWARZECK­_1991

SCHWARZECK­_1991­_NAMIBIA

306

Namibia;
-35º ≤ φ ≤ -11º;
+5º ≤ λ ≤ +31º

Δx = {ΔX(m)}, Δy = {ΔY(m)}, Δz = {ΔZ(m)}, ω1 = ω2 = ω3 = 0“ : precise, Δs = 0 : precise

1991

[83502T, App. B.2, “SCK“]

SELVAGEM­_GRANDE­_1938

SELVAGEM­_GRANDE­_1938­_SALVAGE­_ISLANDS

307

Salvage Islands (Ilhas Selvagens; Savage Islands);
+28º ≤ φ ≤ +32º;
-18º ≤ λ ≤ -14º

Δx = {ΔX(m)}, Δy = {ΔY(m)}, Δz = {ΔZ(m)}, ω1 = ω2 = ω3 = 0“ : precise, Δs = 0 : precise

1938

[83502T, App. B.8, “SGM“]

SIERRA­_LEONE­_1960

SIERRA­_LEONE­_1960­_SIERRA­_LEONE

308

Sierra Leone;
+1º ≤ φ ≤ +16º;
-19º ≤ λ ≤ -4º

Δx = -88, Δy = 4, Δz = 101, ω1 = ω2 = ω3 = 0“, Δs = 0.

1960

[83502T, App. B.2, “SRL“]

SIRGAS­_2000

SIRGAS­_2000­_IDENTITY­_BY­_DEFAULT

309

South America;
-65º ≤ φ ≤ -50º;
-90º ≤ λ ≤ -25º

Δx = Δy = Δz = 0, ω1 = ω2 = ω3 = 0“, Δs = 0.

1988

[83502T, App. B.7, “SIR“]

TANANARIVE­_OBS­_1925

TANANARIVE­_OBS­_1925­_3­_MADAGASCAR

311

Madagascar;
-34º ≤ φ ≤ -8º;
+40º ≤ λ ≤ +53º

Δx = {ΔX(m)}, Δy = {ΔY(m)}, Δz = {ΔZ(m)}, ω1 = ω2 = ω3 = 0“ : precise, Δs = 0 : precise

1925

[83502T, App. C.2, “TAN“]

TANANARIVE­_OBS­_1925­_PM­_PARIS

TANANARIVE­_OBS­_1925­_PM­_PARIS­_3­_MADAGASCAR

312

Madagascar;
-34º ≤ φ ≤ -8º;
+38º ≤ λ ≤ +51º

Δx = {ΔX(m)}, Δy = {ΔY(m)}, Δz = {ΔZ(m)}, ω1 = ω2 = 0“ : precise, ω3 = 2º 20′ 14,025“ : assumed precise, Δs = 0 : precise
Note: The referenced z-axis rotation has been offset so that Paris is contained in the x-positive xz-plane.

1925

[83502T, App. C.2, “TAN“]

TERN­_1961

TERN­_1961­_TERN­_ISLAND

314

Tern Island (French Frigate Shoals, Hawaiian Islands);
+22º ≤ φ ≤ +26º;
-167º ≤ λ ≤ -165º

Δx = {ΔX(m)}, Δy = {ΔY(m)}, Δz = {ΔZ(m)}, ω1 = ω2 = ω3 = 0“ : precise, Δs = 0 : precise

1961

[83502T, App. B.10, “TRN“]

TIMBALAI­_EVEREST­_1948

TIMBALAI­_EVEREST­_1948­_3­_BRUNEI­_E­_MALAYSIA

318

Brunei and East Malaysia (Sabah and Sarawak);
-5º ≤ φ ≤ +15º;
+101º ≤ λ ≤ +125º

Δx = {ΔX(m)}, Δy = {ΔY(m)}, Δz = {ΔZ(m)}, ω1 = ω2 = ω3 = 0“ : precise, Δs = 0 : precise

1948

[83502T, App. B.3, “TIL“]

TIMBALAI­_EVEREST­_1948­_7­_BRUNEI­_E­_MALAYSIA

319

Brunei and East Malaysia (Sabah and Sarawak);
-5º ≤ φ ≤ +15º;
+101º ≤ λ ≤ +125º

Δx = -582,33, Δy = 671,57, Δz = -108,15, ω1 = 1,744“, ω2 = 0,56“, ω3 = 2,876“, Δs = 6,495 x 10-6.

1948

[HELM, “TIL-7“]

TOKYO­_1991

TOKYO­_1991­_JAPAN

322

Japan;
+19º ≤ φ ≤ +51º;
+119º ≤ λ ≤ +156º

Δx = -148, Δy = 507, Δz = 685, ω1 = ω2 = ω3 = 0“, Δs = 0.

1991

[83502T, App. B.3, “TOY-A“]

TOKYO­_1991­_MEAN­_SOLUTION

323

Mean Solution (Japan, Korea, and Okinawa);
+23º ≤ φ ≤ +53º;
+120º ≤ λ ≤ +155º

Δx = {ΔX(m)}, Δy = {ΔY(m)}, Δz = {ΔZ(m)}, ω1 = ω2 = ω3 = 0“ : precise, Δs = 0 : precise

1991

[83502T, App. B.3, “TOY-M“]

TOKYO­_1991­_OKINAWA

324

Okinawa (Japan);
+19º ≤ φ ≤ +31º;
+119º ≤ λ ≤ +134º

Δx = {ΔX(m)}, Δy = {ΔY(m)}, Δz = {ΔZ(m)}, ω1 = ω2 = ω3 = 0“ : precise, Δs = 0 : precise

1991

[83502T, App. B.3, “TOY-C“]

TOKYO­_1991­_SOUTH­_KOREA­_1991

325

South Korea;
+27º ≤ φ ≤ +45º;
+120º ≤ λ ≤ +139º

Δx = -146, Δy = 507, Δz = 685, ω1 = ω2 = ω3 = 0“, Δs = 0.

1991

[83502T, App. B.3, “TOY-B“]

TOKYO­_1991­_SOUTH­_KOREA­_1997

326

South Korea;
+27º ≤ φ ≤ +45º;
+120º ≤ λ ≤ +139º

Δx = {ΔX(m)}, Δy = {ΔY(m)}, Δz = {ΔZ(m)}, ω1 = ω2 = ω3 = 0“ : precise, Δs = 0 : precise

1997

[83502T, App. B.3, “TOY-B1“]

TRISTAN­_1968

TRISTAN­_1968­_TRISTAN­_DA­_CUNHA

327

Tristan da Cunha;
-39º ≤ φ ≤ -36º;
-14º ≤ λ ≤ -11º

Δx = {ΔX(m)}, Δy = {ΔY(m)}, Δz = {ΔZ(m)}, ω1 = ω2 = ω3 = 0“ : precise, Δs = 0 : precise

1968

[83502T, App. B.8, “TDC“]

VITI­_LEVU­_1916

VITI­_LEVU­_1916­_VITI­_LEVU­_ISLANDS

333

Viti Levu Island (Fiji Islands);
-20º ≤ φ ≤ -16º;
+176º ≤ λ ≤ +180º

Δx = {ΔX(m)}, Δy = {ΔY(m)}, Δz = {ΔZ(m)}, ω1 = ω2 = ω3 = 0“ : precise, Δs = 0 : precise

1916

[83502T, App. B.10, “MVS“]

VOIROL­_1874

VOIROL­_1874­_ALGERIA

334

Algeria;
+13º ≤ φ ≤ +43º;
-15º ≤ λ ≤ +11º

Δx = {ΔX(m)}, Δy = {ΔY(m)}, Δz = {ΔZ(m)}, ω1 = ω2 = ω3 = 0“ : precise, Δs = 0 : precise

1874

[83502T, App. C.2, “VOI“]

VOIROL­_1874­_PM­_PARIS

VOIROL­_1874­_PM­_PARIS­_ALGERIA

335

Algeria;
+13º ≤ φ ≤ +43º;
-17º ≤ λ ≤ +9º

Δx = {ΔX(m)}, Δy = {ΔY(m)}, Δz = {ΔZ(m)}, ω1 = ω2 = 0“ : precise, ω3 = 2º 20′ 14,025“ : assumed precise, Δs = 0 : precise
Note: The referenced z-axis rotation has been offset so that Paris is contained in the x-positive xz-plane.

1874

[83502T, App. C.2, “VOI“]

VOIROL­_1960

VOIROL­_1960­_ALGERIA

336

Algeria;
+13º ≤ φ ≤ +43º;
-15º ≤ λ ≤ +11º

Δx = {ΔX(m)}, Δy = {ΔY(m)}, Δz = {ΔZ(m)}, ω1 = ω2 = ω3 = 0“ : precise, Δs = 0 : precise

1960

[83502T, App. B.2, “VOR“]

VOIROL­_1960­_PM­_PARIS

VOIROL­_1960­_PM­_PARIS­_ALGERIA

337

Algeria;
+13º ≤ φ ≤ +43º;
-17º ≤ λ ≤ +9º

Δx = {ΔX(m)}, Δy = {ΔY(m)}, Δz = {ΔZ(m)}, ω1 = ω2 = 0“ : precise, ω3 = 2º 20′ 14,025“ : assumed precise, Δs = 0 : precise
Note: The referenced z-axis rotation has been offset so that Paris is contained in the x-positive xz-plane.

1960

[83502T, App. B.2, “VOR“]

WAKE­_1952

WAKE­_1952­_WAKE­_ATOLL

338

Wake Atoll;
+17º ≤ φ ≤ +21º;
-176º ≤ λ ≤ -171º

Δx = {ΔX(m)}, Δy = {ΔY(m)}, Δz = {ΔZ(m)}, ω1 = ω2 = ω3 = 0“ : precise, Δs = 0 : precise

1952

[83502T, App. B.10, “WAK“]

WAKE­_ENIWETOK­_1960

WAKE­_ENIWETOK­_1960­_MARSHALL­_ISLANDS

339

Marshall Islands;
+1º ≤ φ ≤ +16º;
+159º ≤ λ ≤ +175º

Δx = 102, Δy = 52, Δz = -38, ω1 = ω2 = ω3 = 0“, Δs = 0.

1960

[83502T, App. B.10, “ENW“]

WGS­_1972

WGS­_1972­_GLOBAL

340

Global (Earth)

Δx = {dx} : {second column before last} m, Δy = {dy} : {column next to last} m, Δz = {dz} : {last column} m, ω1 = {rx}“ : unknown, ω2 = {ry}“ : unknown, ω3 = {rz}“ : unknown, Δs = {ds} x 10-6 : assumed precise

1972

[HELM, “WGC-7“], [83502T, Table E.1]

WGS­_1984

WGS­_1984­_IDENTITY

341

Global (Earth)

The reference ORM for the Earth.

1984

[83502T, Section 3]

YACARE­_1987

YACARE­_1987­_URUGUAY

342

Uruguay;
-40º ≤ φ ≤ -25º;
-65º ≤ λ ≤ -47º

Δx = {ΔX(m)}, Δy = {ΔY(m)}, Δz = {ΔZ(m)}, ω1 = ω2 = ω3 = 0“ : precise, Δs = 0 : precise

1987

[83502T, App. C.2, “YAC“]

ZANDERIJ­_1987

ZANDERIJ­_1987­_SURINAME

343

Suriname;
-10º ≤ φ ≤ +20º;
-76º ≤ λ ≤ -47º

Δx = {ΔX(m)}, Δy = {ΔY(m)}, Δz = {ΔZ(m)}, ω1 = ω2 = ω3 = 0“ : precise, Δs = 0 : precise

1987

[83502T, App. B.7, “ZAN“]

 

Table E.7 — Dynamic ERM specifications

ORM Label

ORM
Code

Published
name

Reference ORM

Binding
information

Region

ORMT

RD
parameterization

References

EARTH­_INERTIAL­_ARIES­_1950

53

Earth equatorial inertial, Aries mean of 1950

WGS­_1984

OBRS EQUATORIAL­_INERTIAL
Note: First point of Aries, mean of 1950.

Vicinity of Earth

BI­_AXIS­_ORIGIN­_3D

N/A

Clause 7.5.2

EARTH­_INERTIAL­_ARIES­_TRUE­_OF­_DATE

54

Earth equatorial inertial, Aries true of date

WGS­_1984

OBRS EQUATORIAL­_INERTIAL
Note: First point of Aries, true of date.

Vicinity of Earth

BI­_AXIS­_ORIGIN­_3D

N/A

Clause 7.5.2

EARTH­_INERTIAL­_J2000r0

55

Earth equatorial inertial, J2000.0

WGS­_1984

OBRS EQUATORIAL­_INERTIAL
Note: First point of Aries as of 2000 Jan 1 11:58:55.816 UTC.

Vicinity of Earth

BI­_AXIS­_ORIGIN­_3D

N/A

Clause 7.5.2

EARTH­_SOLAR­_ECLIPTIC

56

Solar ecliptic

WGS­_1984

OBRS SOLAR­_ECLIPTIC 

Vicinity of Earth

BI­_AXIS­_ORIGIN­_3D

N/A

[HAPG]

EARTH­_SOLAR­_EQUATORIAL

57

Solar equatorial

WGS­_1984

OBRS SOLAR­_EQUATORIAL 

Vicinity of Earth

BI­_AXIS­_ORIGIN­_3D

N/A

[CRUS]

EARTH­_SOLAR­_MAG­_DIPOLE

58

Solar magnetic dipole

WGS­_1984

OBRS SOLAR­_MAGNETIC­_DIPOLE 

Vicinity of Earth

BI­_AXIS­_ORIGIN­_3D

N/A

[CRUS], [BHAV]

EARTH­_SOLAR­_MAGNETOSPHERIC

59

Solar magnetospheric

WGS­_1984

OBRS SOLAR­_MAGNETIC­_ECLIPTIC 

Vicinity of Earth

BI­_AXIS­_ORIGIN­_3D

N/A

[CRUS]

 

Table E.8 — Time fixed instance of a dynamic ERM specifications

ORM Label

ORM
Code

Published
name

Reference ORM

Binding
information

Region

ORMT

RD
parameterization

References

GEOMAGNETIC­_1945

77

Geomagnetic

WGS­_1984

1945
OBRS CELESTIOMAGNETIC
Note: Object-fixed base epoch for the 5 year period 1945 to 1950.

Vicinity of Earth

BI­_AXIS­_ORIGIN­_3D

N/A

[DAGF, Table I, “DGRF 1945“]

GEOMAGNETIC­_1950

78

Geomagnetic

WGS­_1984

1950
OBRS CELESTIOMAGNETIC
Note: Object-fixed base epoch for the 5 year period 1950 to 1955.

Vicinity of Earth

BI­_AXIS­_ORIGIN­_3D

N/A

[DAGF, Table I, “DGRF 1950“]

GEOMAGNETIC­_1955

79

Geomagnetic

WGS­_1984

1955
OBRS CELESTIOMAGNETIC
Note: Object-fixed base epoch for the 5 year period 1955 to 1960.

Vicinity of Earth

BI­_AXIS­_ORIGIN­_3D

N/A

[DAGF, Table I, “DGRF 1955“]

GEOMAGNETIC­_1960

80

Geomagnetic

WGS­_1984

1960
OBRS CELESTIOMAGNETIC
Note: Object-fixed base epoch for the 5 year period 1960 to 1965.

Vicinity of Earth

BI­_AXIS­_ORIGIN­_3D

N/A

[DAGF, Table I, “DGRF 1960“]

GEOMAGNETIC­_1965

81

Geomagnetic

WGS­_1984

1965
OBRS CELESTIOMAGNETIC
Note: Object-fixed base epoch for the 5 year period 1965 to 1970.

Vicinity of Earth

BI­_AXIS­_ORIGIN­_3D

N/A

[DAGF, Table I, “DGRF 1965“]

GEOMAGNETIC­_1970

82

Geomagnetic

WGS­_1984

1970
OBRS CELESTIOMAGNETIC
Note: Object-fixed base epoch for the 5 year period 1970 to 1975.

Vicinity of Earth

BI­_AXIS­_ORIGIN­_3D

N/A

[DAGF, Table I, “DGRF 1970“]

GEOMAGNETIC­_1975

83

Geomagnetic

WGS­_1984

1975
OBRS CELESTIOMAGNETIC
Note: Object-fixed base epoch for the 5 year period 1975 to 1980.

Vicinity of Earth

BI­_AXIS­_ORIGIN­_3D

N/A

[DAGF, Table I, “DGRF 1975“]

GEOMAGNETIC­_1980

84

Geomagnetic

WGS­_1984

1980
OBRS CELESTIOMAGNETIC
Note: Object-fixed base epoch for the 5 year period 1980 to 1985.

Vicinity of Earth

BI­_AXIS­_ORIGIN­_3D

N/A

[DAGF, Table I, “DGRF 1980“]

GEOMAGNETIC­_1985

85

Geomagnetic

WGS­_1984

1985
OBRS CELESTIOMAGNETIC
Note: Object-fixed base epoch for the 5 year period 1985 to 1990.

Vicinity of Earth

BI­_AXIS­_ORIGIN­_3D

N/A

[DAGF, Table I, “DGRF 1985“]

GEOMAGNETIC­_1990

86

Geomagnetic

WGS­_1984

1990
OBRS CELESTIOMAGNETIC
Note: Object-fixed base epoch for the 5 year period 1990 to 1995.

Vicinity of Earth

BI­_AXIS­_ORIGIN­_3D

N/A

[DAGF, Table I, “DGRF 1990“]

GEOMAGNETIC­_1995

87

Geomagnetic

WGS­_1984

1995
OBRS CELESTIOMAGNETIC
Note: Object-fixed base epoch for the 5 year period 1995 to 2000.

Vicinity of Earth

BI­_AXIS­_ORIGIN­_3D

N/A

[DAGF, Table I, “IGRF 1995“]

GEOMAGNETIC­_2000

88

Geomagnetic

WGS­_1984

2000
OBRS CELESTIOMAGNETIC
Note: Object-fixed base epoch for the 5 year period 2000 to 2005.

Vicinity of Earth

BI­_AXIS­_ORIGIN­_3D

N/A

[DAGF, Table I, “IGRF 2000“]

 

Table E.9 — Time fixed instance of a dynamic ERM reference transformation specifications

Source ORM Label

RT Label

RT
Code

RT Region

RT Parameters

Date
published

References

GEOMAGNETIC­_1945

GEOMAGNETIC­_1945­_DGRF

105

Global (Earth)

Δx = Δy = Δz = 0, ω1 = 0º, ω2 = -11,53º, ω3 = -68,53º, Δs = 0.
Note: Centred dipole model northern pole.

1945

[DAGF, Table I, “DGRF 1945“]

GEOMAGNETIC­_1950

GEOMAGNETIC­_1950­_DGRF

106

Global (Earth)

Δx = Δy = Δz = 0, ω1 = 0º, ω2 = -11,53º, ω3 = -68,85º, Δs = 0.
Note: Centred dipole model northern pole.

1950

[DAGF, Table I, “DGRF 1950“]

GEOMAGNETIC­_1955

GEOMAGNETIC­_1955­_DGRF

107

Global (Earth)

Δx = Δy = Δz = 0, ω1 = 0º, ω2 = -11,54º, ω3 = -69,16º, Δs = 0.
Note: Centred dipole model northern pole.

1955

[DAGF, Table I, “DGRF 1955“]

GEOMAGNETIC­_1960

GEOMAGNETIC­_1960­_DGRF

108

Global (Earth)

Δx = Δy = Δz = 0, ω1 = 0º, ω2 = -11,49º, ω3 = -69,47º, Δs = 0.
Note: Centred dipole model northern pole.

1960

[DAGF, Table I, “DGRF 1960“]

GEOMAGNETIC­_1965

GEOMAGNETIC­_1965­_DGRF

109

Global (Earth)

Δx = Δy = Δz = 0, ω1 = 0º, ω2 = -11,47º, ω3 = -69,85º, Δs = 0.
Note: Centred dipole model northern pole.

1965

[DAGF, Table I, “DGRF 1965“]

GEOMAGNETIC­_1970

GEOMAGNETIC­_1970­_DGRF

110

Global (Earth)

Δx = Δy = Δz = 0, ω1 = 0º, ω2 = -11,41º, ω3 = -70,18º, Δs = 0.
Note: Centred dipole model northern pole.

1970

[DAGF, Table I, “DGRF 1970“]

GEOMAGNETIC­_1975

GEOMAGNETIC­_1975­_DGRF

111

Global (Earth)

Δx = Δy = Δz = 0, ω1 = 0º, ω2 = -11,31º, ω3 = -70,47º, Δs = 0.
Note: Centred dipole model northern pole.

1975

[DAGF, Table I, “DGRF 1975“]

GEOMAGNETIC­_1980

GEOMAGNETIC­_1980­_DGRF

112

Global (Earth)

Δx = Δy = Δz = 0, ω1 = 0º, ω2 = -11,19º, ω3 = -70,76º, Δs = 0.
Note: Centred dipole model northern pole.

1980

[DAGF, Table I, “DGRF 1980“]

GEOMAGNETIC­_1985

GEOMAGNETIC­_1985­_DGRF

113

Global (Earth)

Δx = Δy = Δz = 0, ω1 = 0º, ω2 = -11,018º, ω3 = -70,905º, Δs = 0.
Note: Centred dipole model northern pole.

1985

[DAGF, Table I, “DGRF 1985“]

GEOMAGNETIC­_1990

GEOMAGNETIC­_1990­_DGRF

114

Global (Earth)

Δx = Δy = Δz = 0, ω1 = 0º, ω2 = -10,87º, ω3 = -71,11º, Δs = 0.
Note: Centred dipole model northern pole.

1990

[DAGF, Table I, “DGRF 1990“]

GEOMAGNETIC­_1995

GEOMAGNETIC­_1995­_IGRF

115

Global (Earth)

Δx = Δy = Δz = 0, ω1 = 0º, ω2 = -10,70º, ω3 = -71,41º, Δs = 0.
Note: Centred dipole model northern pole.

1995

[DAGF, Table I, “IGRF 1995“]

GEOMAGNETIC­_2000

GEOMAGNETIC­_2000­_IGRF

116

Global (Earth)

Note: Centred dipole model northern pole.

2000

[DAGF, Table I, “IGRF 2000“]

 

Table E.10 — Object fixed planet (non-Earth) ORM specifications

ORM Label

ORM
Code

Published
name

Reference ORM

Binding
information

Region

ORMT

RD
parameterization

References

EROS­_2000

63

Eros (asteroid 433)

This is the reference ORM for Eros (asteroid 433, a minor planet).

2000
The x-positive xz-half-plane as determined by an ephemeris as specified in {Table II, “Eros“}, with its associated accuracy as specified in {Section 2, paragraph 5}.

Eros, Global

SPHERE

EROS­_2000

[RIIC, Table III, “Eros“]

GASPRA­_1991

74

Gaspra (asteroid 951)

This is the reference ORM for Gaspra (asteroid 951, a minor planet).

1991
The x-positive xz-half-plane as determined by an observable fixed surface feature and approximated by an ephemeris as specified in {Table II, “Gaspra“}, with its associated accuracy as specified in {Section 2, paragraph 5}.

Gaspra, Global

TRI­_AXIAL­_ELLIPSOID

GASPRA­_1991

[RIIC, Table III, “Gaspra“]

IDA­_1991

104

Ida (asteroid 243)

This is the reference ORM for Ida (asteroid 243, a minor planet).

1991
The x-positive xz-half-plane as determined by an observable fixed surface feature and approximated by an ephemeris as specified in {Table II, “Ida“}, with its associated accuracy as specified in {Section 2, paragraph 5}.

Ida, Global

TRI­_AXIAL­_ELLIPSOID

IDA­_1991

[RIIC, Table III, “Ida“]

JUPITER­_1988

120

Jupiter

This is the reference ORM for Jupiter (a planet).

1988
The x-positive xz-half-plane as determined by an ephemeris as specified in {Table I, “Jupiter“}, with its associated accuracy as specified in {Section 2, paragraph 5}.
Bound to the magnetic field (System III)

Jupiter, Global

OBLATE­_ELLIPSOID

JUPITER­_1988

[RIIC, Table I, “Jupiter“]

MARS­_2000

140

Mars

This is the reference ORM for Mars (a planet).

2000
The x-positive xz-half-plane as determined by an observable fixed surface feature and approximated by an ephemeris as specified in {Table I, “Mars“}, with its associated accuracy as specified in {Section 2, paragraph 5}.

Mars, Global

OBLATE­_ELLIPSOID

MARS­_2000

[RIIC, Table I, “Mars“]

MARS­_SPHERE­_2000

142

Mars (spherical)

MARS­_2000

2000
The x-positive xz-half-plane as determined by an observable fixed surface feature and approximated by an ephemeris as specified in {Table I, “Mars“}, with its associated accuracy as specified in {Section 2, paragraph 5}.

Mars, Global

SPHERE

MARS­_SPHERE­_2000

[RIIC, Table I, “Mars“]

MERCURY­_1988

146

Mercury

This is the reference ORM for Mercury (a planet).

1988
The x-positive xz-half-plane as determined by an observable fixed surface feature and approximated by an ephemeris as specified in {Table I, “Mercury“}, with its associated accuracy as specified in {Section 2, paragraph 5}.

Mercury, Global

SPHERE

MERCURY­_1988

[RIIC, Table I, “Mercury“]

NEPTUNE­_1991

168

Neptune

This is the reference ORM for Neptune (a planet).

1991
The x-positive xz-half-plane as determined by an ephemeris as specified in {Table I, “Neptune“}, with its associated accuracy as specified in {Section 2, paragraph 5}.
Bound to the magnetic field (System III)

Neptune, Global

OBLATE­_ELLIPSOID

NEPTUNE­_1991

[RIIC, Table I, “Neptune“]

PLUTO­_1994

187

Pluto

This is the reference ORM for Pluto (a planet).

1994
The x-positive xz-half-plane as determined by an observable fixed surface feature and approximated by an ephemeris as specified in {Table I, “Pluto“}, with its associated accuracy as specified in {Section 2, paragraph 5}.

Pluto, Global

SPHERE

PLUTO­_1994

[RIIC, Table I, “Pluto“]

SATURN­_1988

215

Saturn

This is the reference ORM for Saturn (a planet).

1988
The x-positive xz-half-plane as determined by an ephemeris as specified in {Table I, “Saturn“}, with its associated accuracy as specified in {Section 2, paragraph 5}.
Bound to the magnetic field (System III)

Saturn, Global

OBLATE­_ELLIPSOID

SATURN­_1988

[RIIC, Table I, “Saturn“]

URANUS­_1988

237

Uranus

This is the reference ORM for Uranus (a planet).

1988
The x-positive xz-half-plane as determined by an ephemeris as specified in {Table I, “Uranus“}, with its associated accuracy as specified in {Section 2, paragraph 5}.
Bound to the magnetic field (System III)

Uranus, Global

OBLATE­_ELLIPSOID

URANUS­_1988

[RIIC, Table I, “Uranus“]

VENUS­_1991

240

Venus

This is the reference ORM for Venus (a planet).

1991
The x-positive xz-half-plane as determined by an observable fixed surface feature and approximated by an ephemeris as specified in {Table I, “Venus“}, with its associated accuracy as specified in {Section 2, paragraph 5}.

Venus, Global

SPHERE

VENUS­_1991

[RIIC, Table I, “Venus“]

 

Table E.11 — Object fixed planet (non-Earth) ORM reference transformation specifications

Source ORM Label

RT Label

RT
Code

RT Region

RT Parameters

Date
published

References

EROS­_2000

EROS­_2000­_IDENTITY

74

Global (Eros)

The reference ORM for object Eros.
Δx = Δy = Δz = 0, ω1 = ω2 = ω3 = 0“, Δs = 0.

2000

[RIIC, Table III, “Eros“]

GASPRA­_1991

GASPRA­_1991­_IDENTITY

101

Global (Gaspra)

The reference ORM for object Gaspra.
Δx = Δy = Δz = 0, ω1 = ω2 = ω3 = 0“, Δs = 0.

1991

[RIIC, Table III, “Gaspra“]

IDA­_1991

IDA­_1991­_IDENTITY

128

Global (Ida)

The reference ORM for object Ida.
Δx = Δy = Δz = 0, ω1 = ω2 = ω3 = 0“, Δs = 0.

1991

[RIIC, Table III, “Ida“]

JUPITER­_1988

JUPITER­_1988­_IDENTITY

148

Global (Jupiter)

The reference ORM for object Jupiter.
Δx = Δy = Δz = 0, ω1 = ω2 = ω3 = 0“, Δs = 0.

2000

[RIIC, Table I, “Jupiter“]

MARS­_2000

MARS­_2000­_IDENTITY

165

Global (Mars)

The reference ORM for object Mars.
Δx = Δy = Δz = 0, ω1 = ω2 = ω3 = 0“, Δs = 0..

2000

[RIIC, Table I, “Mars“]

MARS­_SPHERE­_2000

MARS­_SPHERE­_2000­_GLOBAL

166

Global (Mars)

The reference ORM for object Mars Sphere.

Δx = Δy = Δz = 0, ω1 = ω2 = ω3 = 0“, Δs = 0.

2000

[RIIC, Table I, “Mars“]

MERCURY­_1988

MERCURY­_1988­_IDENTITY

170

Global (Mercury)

The reference ORM for object Mercury.
Δx = Δy = Δz = 0, ω1 = ω2 = ω3 = 0“, Δs = 0.

1988

[RIIC, Table I, “Mercury“]

NEPTUNE­_1991

NEPTUNE­_1991­_IDENTITY

218

Global (Neptune)

The reference ORM for object Neptune.
Δx = Δy = Δz = 0, ω1 = ω2 = ω3 = 0“, Δs = 0.

1991

[RIIC, Table I, “Neptune“]

PLUTO­_1994

PLUTO­_1994­_IDENTITY

249

Global (Pluto)

The reference ORM for object Pluto.
Δx = Δy = Δz = 0, ω1 = ω2 = ω3 = 0“, Δs = 0.

1994

[RIIC, Table I, “Pluto“]

SATURN­_1988

SATURN­_1988­_IDENTITY

304

Global (Saturn)

The reference ORM for object Saturn.
Δx = Δy = Δz = 0, ω1 = ω2 = ω3 = 0“, Δs = 0.

1991

[RIIC, Table I, “Saturn“]

URANUS­_1988

URANUS­_1988­_IDENTITY

330

Global (Uranus)

The reference ORM for object Uranus.
Δx = Δy = Δz = 0, ω1 = ω2 = ω3 = 0“, Δs = 0.

1988

[RIIC, Table I, “Uranus“]

VENUS­_1991

VENUS­_1991­_IDENTITY

332

Global (Venus)

The reference ORM for object Venus.
Δx = Δy = Δz = 0, ω1 = ω2 = ω3 = 0“, Δs = 0.

1991

[RIIC, Table I, “Venus“]

 

Table E.12 — Dynamic planet (non-Earth) ORM specifications

ORM Label

ORM
Code

Published
name

Reference ORM

Binding
information

Region

ORMT

RD
parameterization

References

JUPITER­_INERTIAL

121

Jupiter equatorial inertial

JUPITER­_1988

OBRS EQUATORIAL­_INERTIAL
Note: Vernal equinox, true of date.

Vicinity of Jupiter

BI­_AXIS­_ORIGIN­_3D

N/A

Clause 7.5.2

JUPITER­_SOLAR­_ECLIPTIC

123

Jupiter solar ecliptic

JUPITER­_1988

OBRS SOLAR­_ECLIPTIC 

Vicinity of Jupiter

BI­_AXIS­_ORIGIN­_3D

N/A

[HAPG]

JUPITER­_SOLAR­_EQUATORIAL

124

Jupiter solar equatorial

JUPITER­_1988

OBRS SOLAR­_EQUATORIAL 

Vicinity of Jupiter

BI­_AXIS­_ORIGIN­_3D

N/A

[CRUS]

JUPITER­_SOLAR­_MAG­_DIPOLE

125

Jupiter solar magnetic dipole

JUPITER­_1988

OBRS SOLAR­_MAGNETIC­_DIPOLE 

Vicinity of Jupiter

BI­_AXIS­_ORIGIN­_3D

N/A

[CRUS], [BHAV]

JUPITER­_SOLAR­_MAG­_ECLIPTIC

126

Jupiter solar magnetic ecliptic

JUPITER­_1988

OBRS SOLAR­_MAGNETIC­_ECLIPTIC 

Vicinity of Jupiter

BI­_AXIS­_ORIGIN­_3D

N/A

[CRUS]

MARS­_INERTIAL

141

Mars equatorial inertial

MARS­_2000

OBRS EQUATORIAL­_INERTIAL
Note: Vernal equinox, true of date.

Vicinity of Mars

BI­_AXIS­_ORIGIN­_3D

N/A

Clause 7.5.2

MERCURY­_INERTIAL

147

Mercury equatorial inertial

MERCURY­_1988

OBRS EQUATORIAL­_INERTIAL
Note: Vernal equinox, true of date.

Vicinity of Mercury

BI­_AXIS­_ORIGIN­_3D

N/A

Clause 7.5.2

NEPTUNE­_INERTIAL

169

Neptune equatorial inertial

NEPTUNE­_1991

OBRS EQUATORIAL­_INERTIAL
Note: Vernal equinox, true of date.

Vicinity of Neptune

BI­_AXIS­_ORIGIN­_3D

N/A

Clause 7.5.2

PLUTO­_INERTIAL

188

Pluto equatorial inertial

PLUTO­_1994

OBRS EQUATORIAL­_INERTIAL
Note: Vernal equinox, true of date.

Vicinity of Pluto

BI­_AXIS­_ORIGIN­_3D

N/A

Clause 7.5.2

SATURN­_INERTIAL

216

Saturn equatorial inertial

SATURN­_1988

OBRS EQUATORIAL­_INERTIAL
Note: Vernal equinox, true of date.

Vicinity of Saturn

BI­_AXIS­_ORIGIN­_3D

N/A

Clause 7.5.2

URANUS­_INERTIAL

238

Uranus equatorial inertial

URANUS­_1988

OBRS EQUATORIAL­_INERTIAL
Note: Vernal equinox, true of date.

Vicinity of Uranus

BI­_AXIS­_ORIGIN­_3D

N/A

Clause 7.5.2

VENUS­_INERTIAL

241

Venus equatorial inertial

VENUS­_1991

OBRS EQUATORIAL­_INERTIAL
Note: Vernal equinox, true of date.

Vicinity of Venus

BI­_AXIS­_ORIGIN­_3D

N/A

Clause 7.5.2

 

Table E.13 — Time fixed instance of a dynamic planet (non-Earth) ORM specifications

ORM Label

ORM
Code

Published
name

Reference ORM

Binding
information

Region

ORMT

RD
parameterization

References

JUPITER­_MAGNETIC­_1993

122

Jupiter magnetic

JUPITER­_1988

1992
OBRS CELESTIOMAGNETIC
Note: Object-fixed based on the “eccentric dipoles“ of an octopole representation of a sixth degree and order field (O6) model that was derived from empirical measurements made by the Pioneer 10/11 and Voyager 1/2 spacecraft.

Vicinity of Jupiter

BI­_AXIS­_ORIGIN­_3D

N/A

[MFOP, Table 5, “Jupiter“]

NEPTUNE­_MAGNETIC­_1993

170

Neptune magnetic

NEPTUNE­_1991

1993
OBRS CELESTIOMAGNETIC
Note: Object-fixed based on the “eccentric dipoles“ of an octopole representation of an eighth degree field (O8) model that was derived from empirical measurements made by the Voyager 2 spacecraft.

Vicinity of Neptune

BI­_AXIS­_ORIGIN­_3D

N/A

[MFOP, Table 5, “Neptune“]

SATURN­_MAGNETIC­_1993

217

Saturn magnetic

SATURN­_1988

1993
OBRS CELESTIOMAGNETIC
Note: Object-fixed based on the “eccentric dipoles“ of a Z3 zonal harmonic model that was derived from empirical measurements made by the Pioneer 11 and Voyager 1/2 spacecraft.

Vicinity of Saturn

BI­_AXIS­_ORIGIN­_3D

N/A

[MFOP, Table 5, “Saturn“]

URANUS­_MAGNETIC­_1993

239

Uranus magnetic

URANUS­_1988

1993
OBRS CELESTIOMAGNETIC
Note: Object-fixed based on the “eccentric dipoles“ of an Q3 model that was derived from empirical measurements made by the Voyager 2 spacecraft.

Vicinity of Uranus

BI­_AXIS­_ORIGIN­_3D

N/A

[MFOP, Table 5, “Uranus“]

 

Table E.14 — Time fixed instance of a dynamic planet (non-Earth) ORM reference transformation specifications

Source ORM Label

RT Label

RT
Code

RT Region

RT Parameters

Date
published

References

JUPITER­_MAGNETIC­_1993

JUPITER­_MAGNETIC­_1993­_VOYAGER

149

Global (Jupiter)

Δx = Δy = Δz = 0, ω1 = 0, ω2 = {θ, deg} : unknown, ω3 = 360º - {φ, deg} : unknown, Δs = 0

1993

[MFOP, Table 5, “Jupiter“]

NEPTUNE­_MAGNETIC­_1993

NEPTUNE­_MAGNETIC­_1993­_VOYAGER

219

Global (Neptune)

Δx = Δy = Δz = 0, ω1 = 0, ω2 = {θ, deg} : unknown, ω3 = 360º - {φ, deg} : unknown, Δs = 0

1993

[MFOP, Table 5, “Neptune“]

SATURN­_MAGNETIC­_1993

SATURN­_MAGNETIC­_1993­_VOYAGER

305

Global (Saturn)

Δx = Δy = Δz = 0, ω1 = 0, ω2 = {θ, deg} : < 0,1º (page 18 667), ω3 = 360º - {φ, deg} : N/A, Δs = 0

1993

[MFOP, Table 5, “Saturn“]

URANUS­_MAGNETIC­_1993

URANUS­_MAGNETIC­_1993­_VOYAGER

331

Global (Uranus)

Δx = Δy = Δz = 0, ω1 = 0, ω2 = {θ, deg} : unknown, ω3 = 360º - {φ, deg} : unknown, Δs = 0

1993

[MFOP, Table 5, “Uranus“]

 

Table E.15 — Object fixed satellite ORM specifications

ORM Label

ORM
Code

Published
name

Reference ORM

Binding
information

Region

ORMT

RD
parameterization

References

ADRASTEA­_2000

4

Adrastea

This is the reference ORM for Adrastea (a satellite of Jupiter).

2000
The x-positive xz-half-plane as determined by an ephemeris as specified in {Table II, “Adrastea“}, with its associated accuracy as specified in {Section 2, paragraph 5}.

Adrastea, Global

TRI­_AXIAL­_ELLIPSOID

ADRASTEA­_2000

[RIIC, Table II, “Adrastea“]

AMALTHEA­_2000

7

Amalthea

This is the reference ORM for Amalthea (a satellite of Jupiter).

2000
The x-positive xz-half-plane as determined by an ephemeris as specified in {Table II, “Amalthea“}, with its associated accuracy as specified in {Section 2, paragraph 5}.

Amalthea, Global

TRI­_AXIAL­_ELLIPSOID

AMALTHEA­_2000

[RIIC, Table II, “Amalthea“]

ARIEL­_1988

13

Ariel

This is the reference ORM for Ariel (a satellite of Uranus).

1988
The x-positive xz-half-plane as determined by an ephemeris as specified in {Table II, “Ariel“}, with its associated accuracy as specified in {Section 2, paragraph 5}.

Ariel, Global

SPHERE

ARIEL­_1988

[RIIC, Table II, “Ariel“]

ATLAS­_1988

15

Atlas

This is the reference ORM for Atlas (a satellite of Saturn).

1988
The x-positive xz-half-plane as determined by an ephemeris as specified in {Table II, “Atlas“}, with its associated accuracy as specified in {Section 2, paragraph 5}.

Atlas, Global

OBLATE­_ELLIPSOID

ATLAS­_1988

[RIIC, Table II, “Atlas“]

BELINDA­_1988

20

Belinda

This is the reference ORM for Belinda (a satellite of Uranus).

1988
The x-positive xz-half-plane as determined by an ephemeris as specified in {Table II, “Belinda“}, with its associated accuracy as specified in {Section 2, paragraph 5}.

Belinda, Global

SPHERE

BELINDA­_1988

[RIIC, Table II, “Belinda“]

BIANCA­_1988

23

Bianca

This is the reference ORM for Bianca (a satellite of Uranus).

1988
The x-positive xz-half-plane as determined by an ephemeris as specified in {Table II, “Bianca“}, with its associated accuracy as specified in {Section 2, paragraph 5}.

Bianca, Global

SPHERE

BIANCA­_1988

[RIIC, Table II, “Bianca“]

CALLISTO­_2000

28

Callisto

This is the reference ORM for Callisto (a satellite of Jupiter).

2000
The x-positive xz-half-plane as determined by an observable fixed surface feature and approximated by an ephemeris as specified in {Table II, “Callisto“}, with its associated accuracy as specified in {Section 2, paragraph 5}.

Callisto, Global

SPHERE

CALLISTO­_2000

[RIIC, Table II, “Callisto“]

CALYPSO­_1988

29

Calypso

This is the reference ORM for Calypso (a satellite of Saturn).

1988
The x-positive xz-half-plane as determined by an ephemeris as specified in {Table II, “Calypso“}, with its associated accuracy as specified in {Section 2, paragraph 5}.

Calypso, Global

TRI­_AXIAL­_ELLIPSOID

CALYPSO­_1988

[RIIC, Table II, “Calypso“]

CHARON­_1991

36

Charon

This is the reference ORM for Charon (a satellite of Pluto).

1991
The x-positive xz-half-plane as determined by an ephemeris as specified in {Table II, “Charon“}, with its associated accuracy as specified in {Section 2, paragraph 5}.

Charon, Global

SPHERE

CHARON­_1991

[RIIC, Table II, “Charon“]

CORDELIA­_1988

40

Cordelia

This is the reference ORM for Cordelia (a satellite of Uranus).

1988
The x-positive xz-half-plane as determined by an ephemeris as specified in {Table II, “Cordelia“}, with its associated accuracy as specified in {Section 2, paragraph 5}.

Cordelia, Global

SPHERE

CORDELIA­_1988

[RIIC, Table II, “Cordelia“]

CRESSIDA­_1988

42

Cressida

This is the reference ORM for Cressida (a satellite of Uranus).

1988
The x-positive xz-half-plane as determined by an ephemeris as specified in {Table II, “Cressida“}, with its associated accuracy as specified in {Section 2, paragraph 5}.

Cressida, Global

SPHERE

CRESSIDA­_1988

[RIIC, Table II, “Cressida“]

DEIMOS­_1988

45

Deimos

This is the reference ORM for Deimos (a satellite of Mars).

1988
The x-positive xz-half-plane as determined by an ephemeris as specified in {Table II, “Deimos“}, with its associated accuracy as specified in {Section 2, paragraph 5}.

Deimos, Global

TRI­_AXIAL­_ELLIPSOID

DEIMOS­_1988

[RIIC, Table II, “Deimos“]

DESDEMONA­_1988

46

Desdemona

This is the reference ORM for Desdemona (a satellite of Uranus).

1988
The x-positive xz-half-plane as determined by an ephemeris as specified in {Table II, “Desdemona“}, with its associated accuracy as specified in {Section 2, paragraph 5}.

Desdemona, Global

SPHERE

DESDEMONA­_1988

[RIIC, Table II, “Desdemona“]

DESPINA­_1991

47

Despina

This is the reference ORM for Despina (a satellite of Neptune).

1991
The x-positive xz-half-plane as determined by an ephemeris as specified in {Table II, “Despina“}, with its associated accuracy as specified in {Section 2, paragraph 5}.

Despina, Global

SPHERE

DESPINA­_1991

[RIIC, Table II, “Despina“]

DIONE­_1982

48

Dione

This is the reference ORM for Dione (a satellite of Saturn).

1982
The x-positive xz-half-plane as determined by an observable fixed surface feature and approximated by an ephemeris as specified in {Table II, “Dione“}, with its associated accuracy as specified in {Section 2, paragraph 5}.

Dione, Global

SPHERE

DIONE­_1982

[RIIC, Table II, “Dione“]

ENCELADUS­_1994

61

Enceladus

This is the reference ORM for Enceladus (a satellite of Saturn).

1994
The x-positive xz-half-plane as determined by an observable fixed surface feature and approximated by an ephemeris as specified in {Table II, “Enceladus“}, with its associated accuracy as specified in {Section 2, paragraph 5}.

Enceladus, Global

SPHERE

ENCELADUS­_1994

[RIIC, Table II, “Enceladus“]

EPIMETHEUS­_1988

62

Epimetheus

This is the reference ORM for Epimetheus (a satellite of Saturn).

1988
The x-positive xz-half-plane as determined by an ephemeris as specified in {Table II, “Epimetheus“}, with its associated accuracy as specified in {Section 2, paragraph 5}.

Epimetheus, Global

TRI­_AXIAL­_ELLIPSOID

EPIMETHEUS­_1988

[RIIC, Table II, “Epimetheus“]

EUROPA­_2000

66

Europa

This is the reference ORM for Europa (a satellite of Jupiter).

2000
The x-positive xz-half-plane as determined by an observable fixed surface feature and approximated by an ephemeris as specified in {Table II, “Europa“}, with its associated accuracy as specified in {Section 2, paragraph 5}.

Europa, Global

SPHERE

EUROPA­_2000

[RIIC, Table II, “Europa“]

GALATEA­_1991

71

Galatea

This is the reference ORM for Galatea (a satellite of Neptune).

1991
The x-positive xz-half-plane as determined by an ephemeris as specified in {Table II, “Galatea“}, with its associated accuracy as specified in {Section 2, paragraph 5}.

Galatea, Global

SPHERE

GALATEA­_1991

[RIIC, Table II, “Galatea“]

GANYMEDE­_2000

73

Ganymede

This is the reference ORM for Ganymede (a satellite of Jupiter).

2000
The x-positive xz-half-plane as determined by an observable fixed surface feature and approximated by an ephemeris as specified in {Table II, “Ganymede“}, with its associated accuracy as specified in {Section 2, paragraph 5}.

Ganymede, Global

SPHERE

GANYMEDE­_2000

[RIIC, Table II, “Ganymede“]

HELENE­_1992

93

Helene

This is the reference ORM for Helene (a satellite of Saturn).

1992
The x-positive xz-half-plane as determined by an ephemeris as specified in {Table II, “Helene“}, with its associated accuracy as specified in {Section 2, paragraph 5}.

Helene, Global

TRI­_AXIAL­_ELLIPSOID

HELENE­_1992

[RIIC, Table II, “Helene“]

IAPETUS­_1988

103

Iapetus

This is the reference ORM for Iapetus (a satellite of Saturn).

1988
The x-positive xz-half-plane as determined by an observable fixed surface feature and approximated by an ephemeris as specified in {Table II, “Iapetus“}, with its associated accuracy as specified in {Section 2, paragraph 5}.

Iapetus, Global

SPHERE

IAPETUS­_1988

[RIIC, Table II, “Iapetus“]

IO­_2000

112

Io

This is the reference ORM for Io (a satellite of Jupiter).

2000
The x-positive xz-half-plane as determined by an ephemeris as specified in {Table II, “Io“}, with its associated accuracy as specified in {Section 2, paragraph 5}.

Io, Global

SPHERE

IO­_2000

[RIIC, Table II, “Io“]

JANUS­_1988

116

Janus

This is the reference ORM for Janus (a satellite of Saturn).

1988
The x-positive xz-half-plane as determined by an ephemeris as specified in {Table II, “Janus“}, with its associated accuracy as specified in {Section 2, paragraph 5}.

Janus, Global

TRI­_AXIAL­_ELLIPSOID

JANUS­_1988

[RIIC, Table II, “Janus“]

JULIET­_1988

119

Juliet

This is the reference ORM for Juliet (a satellite of Uranus).

1988
The x-positive xz-half-plane as determined by an ephemeris as specified in {Table II, “Juliet“}, with its associated accuracy as specified in {Section 2, paragraph 5}.

Juliet, Global

SPHERE

JULIET­_1988

[RIIC, Table II, “Juliet“]

LARISSA­_1991

132

Larissa

This is the reference ORM for Larissa (a satellite of Neptune).

1991
The x-positive xz-half-plane as determined by an ephemeris as specified in {Table II, “Larissa“}, with its associated accuracy as specified in {Section 2, paragraph 5}.

Larissa, Global

OBLATE­_ELLIPSOID

LARISSA­_1991

[RIIC, Table II, “Larissa“]

METIS­_2000

148

Metis

This is the reference ORM for Metis (a satellite of Jupiter).

2000
The x-positive xz-half-plane as determined by an ephemeris as specified in {Table II, “Metis“}, with its associated accuracy as specified in {Section 2, paragraph 5}.

Metis, Global

SPHERE

METIS­_2000

[RIIC, Table II, “Metis“]

MIMAS­_1994

150

Mimas

This is the reference ORM for Mimas (a satellite of Saturn).

1994
The x-positive xz-half-plane as determined by an observable fixed surface feature and approximated by an ephemeris as specified in {Table II, “Mimas“}, with its associated accuracy as specified in {Section 2, paragraph 5}.

Mimas, Global

SPHERE

MIMAS­_1994

[RIIC, Table II, “Mimas“]

MIRANDA­_1988

152

Miranda

This is the reference ORM for Miranda (a satellite of Uranus).

1988
The x-positive xz-half-plane as determined by an ephemeris as specified in {Table II, “Miranda“}, with its associated accuracy as specified in {Section 2, paragraph 5}.

Miranda, Global

SPHERE

MIRANDA­_1988

[RIIC, Table II, “Miranda“]

MOON­_1991

160

Moon

This is the reference ORM for Moon (a satellite of Earth).

1991
The x-positive xz-half-plane as determined by an ephemeris as specified in {Table II, “Moon“}, with its associated accuracy as specified in {Section 2, paragraph 5}.

Moon, Global

SPHERE

MOON­_1991

[RIIC, Table II, “Moon“]

NAIAD­_1991

166

Naiad

This is the reference ORM for Naiad (a satellite of Neptune).

1991
The x-positive xz-half-plane as determined by an ephemeris as specified in {Table II, “Naiad“}, with its associated accuracy as specified in {Section 2, paragraph 5}.

Naiad, Global

SPHERE

NAIAD­_1991

[RIIC, Table II, “Naiad“]

OBERON­_1988

174

Oberon

This is the reference ORM for Oberon (a satellite of Uranus).

1988
The x-positive xz-half-plane as determined by an ephemeris as specified in {Table II, “Oberon“}, with its associated accuracy as specified in {Section 2, paragraph 5}.

Oberon, Global

SPHERE

OBERON­_1988

[RIIC, Table II, “Oberon“]

OPHELIA­_1988

179

Ophelia

This is the reference ORM for Ophelia (a satellite of Uranus).

1988
The x-positive xz-half-plane as determined by an ephemeris as specified in {Table II, “Ophelia“}, with its associated accuracy as specified in {Section 2, paragraph 5}.

Ophelia, Global

SPHERE

OPHELIA­_1988

[RIIC, Table II, “Ophelia“]

PAN­_1991

181

Pan

This is the reference ORM for Pan (a satellite of Saturn).

1991
The x-positive xz-half-plane as determined by an ephemeris as specified in {Table II, “Pan“}, with its associated accuracy as specified in {Section 2, paragraph 5}.

Pan, Global

SPHERE

PAN­_1991

[RIIC, Table II, “Pan“]

PANDORA­_1988

182

Pandora

This is the reference ORM for Pandora (a satellite of Saturn).

1988
The x-positive xz-half-plane as determined by an ephemeris as specified in {Table II, “Pandora“}, with its associated accuracy as specified in {Section 2, paragraph 5}.

Pandora, Global

TRI­_AXIAL­_ELLIPSOID

PANDORA­_1988

[RIIC, Table II, “Pandora“]

PHOBOS­_1988

183

Phobos

This is the reference ORM for Phobos (a satellite of Mars).

1988
The x-positive xz-half-plane as determined by an ephemeris as specified in {Table II, “Phobos“}, with its associated accuracy as specified in {Section 2, paragraph 5}.

Phobos, Global

TRI­_AXIAL­_ELLIPSOID

PHOBOS­_1988

[RIIC, Table II, “Phobos“]

PHOEBE­_1988

184

Phoebe

This is the reference ORM for Phoebe (a satellite of Saturn).

1988
The x-positive xz-half-plane as determined by an ephemeris as specified in {Table II, “Phoebe“}, with its associated accuracy as specified in {Section 2, paragraph 5}.

Phoebe, Global

SPHERE

PHOEBE­_1988

[RIIC, Table II, “Phoebe“]

PORTIA­_1988

191

Portia

This is the reference ORM for Portia (a satellite of Uranus).

1988
The x-positive xz-half-plane as determined by an ephemeris as specified in {Table II, “Portia“}, with its associated accuracy as specified in {Section 2, paragraph 5}.

Portia, Global

SPHERE

PORTIA­_1988

[RIIC, Table II, “Portia“]

PROMETHEUS­_1988

193

Prometheus

This is the reference ORM for Prometheus (a satellite of Saturn).

1988
The x-positive xz-half-plane as determined by an ephemeris as specified in {Table II, “Prometheus“}, with its associated accuracy as specified in {Section 2, paragraph 5}.

Prometheus, Global

TRI­_AXIAL­_ELLIPSOID

PROMETHEUS­_1988

[RIIC, Table II, “Prometheus“]

PROTEUS­_1991

194

Proteus

This is the reference ORM for Proteus (a satellite of Neptune).

1991
The x-positive xz-half-plane as determined by an ephemeris as specified in {Table II, “Proteus“}, with its associated accuracy as specified in {Section 2, paragraph 5}.

Proteus, Global

TRI­_AXIAL­_ELLIPSOID

PROTEUS­_1991

[RIIC, Table II, “Proteus“]

PUCK­_1988

197

Puck

This is the reference ORM for Puck (a satellite of Uranus).

1988
The x-positive xz-half-plane as determined by an ephemeris as specified in {Table II, “Puck“}, with its associated accuracy as specified in {Section 2, paragraph 5}.

Puck, Global

SPHERE

PUCK­_1988

[RIIC, Table II, “Puck“]

RHEA­_1988

204

Rhea

This is the reference ORM for Rhea (a satellite of Saturn).

1988
The x-positive xz-half-plane as determined by an observable fixed surface feature and approximated by an ephemeris as specified in {Table II, “Rhea“}, with its associated accuracy as specified in {Section 2, paragraph 5}.

Rhea, Global

SPHERE

RHEA­_1988

[RIIC, Table II, “Rhea“]

ROSALIND­_1988

207

Rosalind

This is the reference ORM for Rosalind (a satellite of Uranus).

1988
The x-positive xz-half-plane as determined by an ephemeris as specified in {Table II, “Rosalind“}, with its associated accuracy as specified in {Section 2, paragraph 5}.

Rosalind, Global

SPHERE

ROSALIND­_1988

[RIIC, Table II, “Rosalind“]

TELESTO­_1988

225

Telesto

This is the reference ORM for Telesto (a satellite of Saturn).

1988
The x-positive xz-half-plane as determined by an ephemeris as specified in {Table II, “Telesto“}, with its associated accuracy as specified in {Section 2, paragraph 5}.

Telesto, Global

TRI­_AXIAL­_ELLIPSOID

TELESTO­_1988

[RIIC, Table II, “Telesto“]

TETHYS­_1991

227

Tethys

This is the reference ORM for Tethys (a satellite of Saturn).

1991
The x-positive xz-half-plane as determined by an observable fixed surface feature and approximated by an ephemeris as specified in {Table II, “Tethys“}, with its associated accuracy as specified in {Section 2, paragraph 5}.

Tethys, Global

SPHERE

TETHYS­_1991

[RIIC, Table II, “Tethys“]

THALASSA­_1991

228

Thalassa

This is the reference ORM for Thalassa (a satellite of Neptune).

1991
The x-positive xz-half-plane as determined by an ephemeris as specified in {Table II, “Thalassa“}, with its associated accuracy as specified in {Section 2, paragraph 5}.

Thalassa, Global

SPHERE

THALASSA­_1991

[RIIC, Table II, “Thalassa“]

THEBE­_2000

229

Thebe

This is the reference ORM for Thebe (a satellite of Jupiter).

2000
The x-positive xz-half-plane as determined by an ephemeris as specified in {Table II, “Thebe“}, with its associated accuracy as specified in {Section 2, paragraph 5}.

Thebe, Global

OBLATE­_ELLIPSOID

THEBE­_2000

[RIIC, Table II, “Thebe“]

TITAN­_1982

231

Titan

This is the reference ORM for Titan (a satellite of Saturn).

1982
The x-positive xz-half-plane as determined by an ephemeris as specified in {Table II, “Titan“}, with its associated accuracy as specified in {Section 2, paragraph 5}.

Titan, Global

SPHERE

TITAN­_1982

[RIIC, Table II, “Titan“]

TITANIA­_1988

232

Titania

This is the reference ORM for Titania (a satellite of Uranus).

1988
The x-positive xz-half-plane as determined by an ephemeris as specified in {Table II, “Titania“}, with its associated accuracy as specified in {Section 2, paragraph 5}.

Titania, Global

SPHERE

TITANIA­_1988

[RIIC, Table II, “Titania“]

TRITON­_1991

235

Triton

This is the reference ORM for Triton (a satellite of Neptune).

1991
The x-positive xz-half-plane as determined by an ephemeris as specified in {Table II, “Triton“}, with its associated accuracy as specified in {Section 2, paragraph 5}.

Triton, Global

SPHERE

TRITON­_1991

[RIIC, Table II, “Triton“]

UMBRIEL­_1988

236

Umbriel

This is the reference ORM for Umbriel (a satellite of Uranus).

1988
The x-positive xz-half-plane as determined by an ephemeris as specified in {Table II, “Umbriel“}, with its associated accuracy as specified in {Section 2, paragraph 5}.

Umbriel, Global

SPHERE

UMBRIEL­_1988

[RIIC, Table II, “Umbriel“]

 

Table E.16 — Object fixed satellite ORM reference transformation specifications

Source ORM Label

RT Label

RT
Code

RT Region

RT Parameters

Date
published

References

ADRASTEA­_2000

ADRASTEA­_2000­_IDENTITY

10

Global (Adrastea)

The reference ORM for object Adrastea.
Δx = Δy = Δz = 0, ω1 = ω2 = ω3 = 0“, Δs = 0.

2000

[RIIC, Table II, “Adrastea“]

AMALTHEA­_2000

AMALTHEA­_2000­_IDENTITY

14

Global (Amalthea)

The reference ORM for object Amalthea.
Δx = Δy = Δz = 0, ω1 = ω2 = ω3 = 0“, Δs = 0.

2000

[RIIC, Table II, “Amalthea“]

ARIEL­_1988

ARIEL­_1988­_IDENTITY

30

Global (Ariel)

The reference ORM for object Ariel.
Δx = Δy = Δz = 0, ω1 = ω2 = ω3 = 0“, Δs = 0.

1988

[RIIC, Table II, “Ariel“]

ATLAS­_1988

ATLAS­_1988­_IDENTITY

32

Global (Atlas)

The reference ORM for object Atlas.
Δx = Δy = Δz = 0, ω1 = ω2 = ω3 = 0“, Δs = 0.

1988

[RIIC, Table II, “Atlas“]

BELINDA­_1988

BELINDA­_1988­_IDENTITY

38

Global (Belinda)

The reference ORM for object Belinda.
Δx = Δy = Δz = 0, ω1 = ω2 = ω3 = 0“, Δs = 0.

1988

[RIIC, Table II, “Belinda“]

BIANCA­_1988

BIANCA­_1988­_IDENTITY

41

Global (Bianca)

The reference ORM for object Bianca.
Δx = Δy = Δz = 0, ω1 = ω2 = ω3 = 0“, Δs = 0.

1988

[RIIC, Table II, “Bianca“]

CALLISTO­_2000

CALLISTO­_2000­_IDENTITY

46

Global (Callisto)

The reference ORM for object Callisto.
Δx = Δy = Δz = 0, ω1 = ω2 = ω3 = 0“, Δs = 0.

2000

[RIIC, Table II, “Callisto“]

CALYPSO­_1988

CALYPSO­_1988­_IDENTITY

47

Global (Calypso)

The reference ORM for object Calypso.
Δx = Δy = Δz = 0, ω1 = ω2 = ω3 = 0“, Δs = 0.

2000

[RIIC, Table II, “Calypso“]

CHARON­_1991

CHARON­_1991­_IDENTITY

54

Global (Charon)

The reference ORM for object Charon.
Δx = Δy = Δz = 0, ω1 = ω2 = ω3 = 0“, Δs = 0.

1991

[RIIC, Table II, “Charon“]

CORDELIA­_1988

CORDELIA­_1988­_IDENTITY

58

Global (Cordelia)

The reference ORM for object Cordelia.
Δx = Δy = Δz = 0, ω1 = ω2 = ω3 = 0“, Δs = 0.

1988

[RIIC, Table II, “Cordelia“]

CRESSIDA­_1988

CRESSIDA­_1988­_IDENTITY

60

Global (Cressida)

The reference ORM for object Cressida.
Δx = Δy = Δz = 0, ω1 = ω2 = ω3 = 0“, Δs = 0.

1988

[RIIC, Table II, “Cressida“]

DEIMOS­_1988

DEIMOS­_1988­_IDENTITY

63

Global (Deimos)

The reference ORM for object Deimos.
Δx = Δy = Δz = 0, ω1 = ω2 = ω3 = 0“, Δs = 0.

1988

[RIIC, Table II, “Deimos“]

DESDEMONA­_1988

DESDEMONA­_1988­_IDENTITY

64

Global (Desdemona)

The reference ORM for object Desdemona.
Δx = Δy = Δz = 0, ω1 = ω2 = ω3 = 0“, Δs = 0.

2000

[RIIC, Table II, “Desdemona“]

DESPINA­_1991

DESPINA­_1991­_IDENTITY

65

Global (Despina)

The reference ORM for object Despina.
Δx = Δy = Δz = 0, ω1 = ω2 = ω3 = 0“, Δs = 0.

1991

[RIIC, Table II, “Despina“]

DIONE­_1982

DIONE­_1982­_IDENTITY

66

Global (Dione)

The reference ORM for object Dione.
Δx = Δy = Δz = 0, ω1 = ω2 = ω3 = 0“, Δs = 0.

2000

[RIIC, Table II, “Dione“]

ENCELADUS­_1994

ENCELADUS­_1994­_IDENTITY

72

Global (Enceladus)

The reference ORM for object Enceladus.
Δx = Δy = Δz = 0, ω1 = ω2 = ω3 = 0“, Δs = 0.

1994

[RIIC, Table II, “Enceladus“]

EPIMETHEUS­_1988

EPIMETHEUS­_1988­_IDENTITY

73

Global (Epimetheus)

The reference ORM for object Epimetheus.
Δx = Δy = Δz = 0, ω1 = ω2 = ω3 = 0“, Δs = 0.

2000

[RIIC, Table II, “Epimetheus“]

EUROPA­_2000

EUROPA­_2000­_IDENTITY

77

Global (Europa)

The reference ORM for object Europa.
Δx = Δy = Δz = 0, ω1 = ω2 = ω3 = 0“, Δs = 0.

2000

[RIIC, Table II, “Europa“]

GALATEA­_1991

GALATEA­_1991­_IDENTITY

98

Global (Galatea)

The reference ORM for object Galatea.
Δx = Δy = Δz = 0, ω1 = ω2 = ω3 = 0“, Δs = 0.

1991

[RIIC, Table II, “Galatea“]

GANYMEDE­_2000

GANYMEDE­_2000­_IDENTITY

100

Global (Ganymede)

The reference ORM for object Ganymede.
Δx = Δy = Δz = 0, ω1 = ω2 = ω3 = 0“, Δs = 0.

2000

[RIIC, Table II, “Ganymede“]

HELENE­_1992

HELENE­_1992­_IDENTITY

121

Global (Helene)

The reference ORM for object Helene.
Δx = Δy = Δz = 0, ω1 = ω2 = ω3 = 0“, Δs = 0.

1992

[RIIC, Table II, “Helene“]

IAPETUS­_1988

IAPETUS­_1988­_IDENTITY

127

Global (Iapetus)

The reference ORM for object Iapetus.
Δx = Δy = Δz = 0, ω1 = ω2 = ω3 = 0“, Δs = 0.

2000

[RIIC, Table II, “Iapetus“]

IO­_2000

IO­_2000­_IDENTITY

139

Global (Io)

The reference ORM for object Io.
Δx = Δy = Δz = 0, ω1 = ω2 = ω3 = 0“, Δs = 0.

2000

[RIIC, Table II, “Io“]

JANUS­_1988

JANUS­_1988­_IDENTITY

144

Global (Janus)

The reference ORM for object Janus.
Δx = Δy = Δz = 0, ω1 = ω2 = ω3 = 0“, Δs = 0.

2000

[RIIC, Table II, “Janus“]

JULIET­_1988

JULIET­_1988­_IDENTITY

147

Global (Juliet)

The reference ORM for object Juliet.
Δx = Δy = Δz = 0, ω1 = ω2 = ω3 = 0“, Δs = 0.

2000

[RIIC, Table II, “Juliet“]

LARISSA­_1991

LARISSA­_1991­_IDENTITY

155

Global (Larissa)

The reference ORM for object Larissa.
Δx = Δy = Δz = 0, ω1 = ω2 = ω3 = 0“, Δs = 0.

1991

[RIIC, Table II, “Larissa“]

METIS­_2000

METIS­_2000­_IDENTITY

171

Global (Metis)

The reference ORM for object Metis.
Δx = Δy = Δz = 0, ω1 = ω2 = ω3 = 0“, Δs = 0.

2000

[RIIC, Table II, “Metis“]

MIMAS­_1994

MIMAS­_1994­_IDENTITY

173

Global (Mimas)

The reference ORM for object Mimas.
Δx = Δy = Δz = 0, ω1 = ω2 = ω3 = 0“, Δs = 0.

1994

[RIIC, Table II, “Mimas“]

MIRANDA­_1988

MIRANDA­_1988­_IDENTITY

176

Global (Miranda)

The reference ORM for object Miranda.
Δx = Δy = Δz = 0, ω1 = ω2 = ω3 = 0“, Δs = 0.

1988

[RIIC, Table II, “Miranda“]

MOON­_1991

MOON­_1991­_IDENTITY

184

Global (Moon)

The reference ORM for object Moon.
Δx = Δy = Δz = 0, ω1 = ω2 = ω3 = 0“, Δs = 0.

1991

[RIIC, Table II, “Moon“]

NAIAD­_1991

NAIAD­_1991­_IDENTITY

216

Global (Naiad)

The reference ORM for object Naiad.
Δx = Δy = Δz = 0, ω1 = ω2 = ω3 = 0“, Δs = 0.

1991

[RIIC, Table II, “Naiad“]

OBERON­_1988

OBERON­_1988­_IDENTITY

223

Global (Oberon)

The reference ORM for object Oberon.
Δx = Δy = Δz = 0, ω1 = ω2 = ω3 = 0“, Δs = 0.

1988

[RIIC, Table II, “Oberon“]

OPHELIA­_1988

OPHELIA­_1988­_IDENTITY

236

Global (Ophelia)

The reference ORM for object Ophelia.
Δx = Δy = Δz = 0, ω1 = ω2 = ω3 = 0“, Δs = 0.

1988

[RIIC, Table II, “Ophelia“]

PAN­_1991

PAN­_1991­_IDENTITY

243

Global (Pan)

The reference ORM for object Pan.
Δx = Δy = Δz = 0, ω1 = ω2 = ω3 = 0“, Δs = 0.

1991

[RIIC, Table II, “Pan“]

PANDORA­_1988

PANDORA­_1988­_IDENTITY

244

Global (Pandora)

The reference ORM for object Pandora.
Δx = Δy = Δz = 0, ω1 = ω2 = ω3 = 0“, Δs = 0.

1988

[RIIC, Table II, “Pandora“]

PHOBOS­_1988

PHOBOS­_1988­_IDENTITY

245

Global (Phobos)

The reference ORM for object Phobos.
Δx = Δy = Δz = 0, ω1 = ω2 = ω3 = 0“, Δs = 0.

1988

[RIIC, Table II, “Phobos“]

PHOEBE­_1988

PHOEBE­_1988­_IDENTITY

246

Global (Phoebe)

The reference ORM for object Phoebe.
Δx = Δy = Δz = 0, ω1 = ω2 = ω3 = 0“, Δs = 0.

1988

[RIIC, Table II, “Phoebe“]

PORTIA­_1988

PORTIA­_1988­_IDENTITY

252

Global (Portia)

The reference ORM for object Portia.
Δx = Δy = Δz = 0, ω1 = ω2 = ω3 = 0“, Δs = 0.

1988

[RIIC, Table II, “Portia“]

PROMETHEUS­_1988

PROMETHEUS­_1988­_IDENTITY

254

Global (Prometheus)

The reference ORM for object Prometheus.
Δx = Δy = Δz = 0, ω1 = ω2 = ω3 = 0“, Δs = 0.

1988

[RIIC, Table II, “Prometheus“]

PROTEUS­_1991

PROTEUS­_1991­_IDENTITY

255

Global (Proteus)

The reference ORM for object Proteus.
Δx = Δy = Δz = 0, ω1 = ω2 = ω3 = 0“, Δs = 0.

1991

[RIIC, Table II, “Proteus“]

PUCK­_1988

PUCK­_1988­_IDENTITY

267

Global (Puck)

The reference ORM for object Puck.
Δx = Δy = Δz = 0, ω1 = ω2 = ω3 = 0“, Δs = 0.

1988

[RIIC, Table II, “Puck“]

RHEA­_1988

RHEA­_1988­_IDENTITY

274

Global (Rhea)

The reference ORM for object Rhea.
Δx = Δy = Δz = 0, ω1 = ω2 = ω3 = 0“, Δs = 0.

1988

[RIIC, Table II, “Rhea“]

ROSALIND­_1988

ROSALIND­_1988­_IDENTITY

277

Global (Rosalind)

The reference ORM for object Rosalind.
Δx = Δy = Δz = 0, ω1 = ω2 = ω3 = 0“, Δs = 0.

1988

[RIIC, Table II, “Rosalind“]

TELESTO­_1988

TELESTO­_1988­_IDENTITY

313

Global (Telesto)

The reference ORM for object Telesto.
Δx = Δy = Δz = 0, ω1 = ω2 = ω3 = 0“, Δs = 0.

1988

[RIIC, Table II, “Telesto“]

TETHYS­_1991

TETHYS­_1991­_IDENTITY

315

Global (Tethys)

The reference ORM for object Tethys.
Δx = Δy = Δz = 0, ω1 = ω2 = ω3 = 0“, Δs = 0.

1991

[RIIC, Table II, “Tethys“]

THALASSA­_1991

THALASSA­_1991­_IDENTITY

316

Global (Thalassa)

The reference ORM for object Thalassa.
Δx = Δy = Δz = 0, ω1 = ω2 = ω3 = 0“, Δs = 0.

1991

[RIIC, Table II, “Thalassa“]

THEBE­_2000

THEBE­_2000­_IDENTITY

317

Global (Thebe)

The reference ORM for object Thebe.
Δx = Δy = Δz = 0, ω1 = ω2 = ω3 = 0“, Δs = 0.

2000

[RIIC, Table II, “Thebe“]

TITAN­_1982

TITAN­_1982­_IDENTITY

320

Global (Titan)

The reference ORM for object Titan.
Δx = Δy = Δz = 0, ω1 = ω2 = ω3 = 0“, Δs = 0.

1988

[RIIC, Table II, “Titan“]

TITANIA­_1988

TITANIA­_1988­_IDENTITY

321

Global (Titania)

The reference ORM for object Titania.
Δx = Δy = Δz = 0, ω1 = ω2 = ω3 = 0“, Δs = 0.

1988

[RIIC, Table II, “Titania“]

TRITON­_1991

TRITON­_1991­_IDENTITY

328

Global (Triton)

The reference ORM for object Triton.
Δx = Δy = Δz = 0, ω1 = ω2 = ω3 = 0“, Δs = 0.

1991

[RIIC, Table II, “Triton“]

UMBRIEL­_1988

UMBRIEL­_1988­_IDENTITY

329

Global (Umbriel)

The reference ORM for object Umbriel.
Δx = Δy = Δz = 0, ω1 = ω2 = ω3 = 0“, Δs = 0.

1988

[RIIC, Table II, “Umbriel“]

 

Table E.17 — Time fixed instance of a dynamic satellite ORM specifications

In this International Standard there are no time fixed instance of a dynamic satellite ORM specifications, therefore this table is empty.

 

Table E.18 — Time fixed instance of a dynamic satellite ORM reference transformation specifications

In this International Standard there are no time fixed instance of a dynamic satellite ORM reference transformation specifications, therefore this table is empty.

 

Table E.19 — Stellar ORM specifications

ORM Label

ORM
Code

Published
name

Reference ORM

Binding
information

Region

ORMT

RD
parameterization

References

SUN­_1992

222

Sun

This is the reference ORM for the Sun (a star).

1992
The x-positive xz-half-plane as determined by an ephemeris as specified in {Table I, “Sun“}, with its associated accuracy as specified in {Section 2, paragraph 5}.

Sun, Global

SPHERE

SUN­_1992

[RIIC, Table I, “Sun“]

 

Table E.20 — Stellar ORM reference transformation specifications

Source ORM Label

RT Label

RT
Code

RT Region

RT Parameters

Date
published

References

SUN­_1992

SUN­_1992­_IDENTITY

310

Global (Sun)

The reference ORM for object Sun.
Δx = Δy = Δz = 0, ω1 = ω2 = ω3 = 0“, Δs = 0.

1992

[RIIC, Table I, “Sun“]

 

Table E.21 — Dynamic stellar ORM specifications

ORM Label

ORM
Code

Published
name

Reference ORM

Binding
information

Region

ORMT

RD
parameterization

References

HELIO­_ARIES­_ECLIPTIC­_J2000r0

94

Heliocentric Aries ecliptic, J2000.0

SUN­_1992

OBRS HELIOCENTRIC­_ARIES­_ECLIPTIC
Note: First point of Aries as of 2000 Jan 1 11:58:55.816 UTC.

Solar system

BI­_AXIS­_ORIGIN­_3D

N/A

[HAPG]

HELIO­_ARIES­_ECLIPTIC­_TRUE­_OF­_DATE

95

Heliocentric Aries ecliptic, true of date

SUN­_1992

OBRS HELIOCENTRIC­_ARIES­_ECLIPTIC
Note: First point of Aries, true of date.

Solar system

BI­_AXIS­_ORIGIN­_3D

N/A

[HAPG]

HELIO­_EARTH­_ECLIPTIC

96

Heliocentric Earth ecliptic

SUN­_1992

OBRS HELIOCENTRIC­_PLANET­_ECLIPTIC 

Solar system

BI­_AXIS­_ORIGIN­_3D

N/A

[HAPG]

HELIO­_EARTH­_EQUATORIAL

97

Heliocentric Earth equatorial

SUN­_1992

OBRS HELIOCENTRIC­_PLANET­_EQUATORIAL 

Solar system

BI­_AXIS­_ORIGIN­_3D

N/A

[HAPG]

 

Table E.22 — Time fixed instance of a dynamic stellar ORM specifications

In this International Standard there are no time fixed instance of a dynamic stellar ORM specifications, therefore this table is empty.

 

Table E.23 — Time fixed instance of a dynamic stellar ORM reference transformation specifications

In this International Standard there are no time fixed instance of a dynamic stellar ORM reference transformation specifications, therefore this table is empty.


[ Table of contents ]