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1 Introduction 
This user’s manual describes how to use the Spatial Reference Model (SRM) software 
implementation to transform entity state information between different spatial reference frames.  
It provides an integrated example framework that is used to illustrate how software developers 
can use the SRM implementation to perform these transformation operations. 
 
The remainder of this user’s manual is organized as follows: 

• Section 2 summarizes the scope of the SRM software addressed in this manual. 
• Section 3 provides an overview of the relevant parts of the SRM Application Program 

Interface (API). 
• Section 4 describes the framework used for the examples in this user’s manual. 
• Section 5 discusses the transformation of position information. 
• Section 6 discusses the transformation of orientation information. 
• Section 7 discusses the transformation of vector quantities, including linear velocity, 

angular velocity, linear acceleration, and angular acceleration information. 
 
For background and general information on the SRM, please review the SRM standard (ISO/IEC 
18026:2006), available from the SEDRIS web site at http://standards.sedris.org.  This user’s 
manual assumes the reader is familiar with the fundamental concepts and terminology of the 
SRM.  In addition, familiarity with, and review of, the documentation contained within the SRM 
implementation software development kit (SDK) is recommended.  Fundamental background 
information on the concept of orientation, the various forms in which orientation information can 
be represented, and the relationships between orientation, direction, and vector quantities is 
provided in the document “Technical Concepts: Orientation, Rotation, Velocity, and 
Acceleration and the SRM”, which can be found at http://www.sedris.org/srm_desc.htm#papers. 
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2 Scope 
The SRM software implementation provides facilities to transform entity state information for 
both particles and rigid bodies from one spatial reference frame (SRF) to another.  The SRM 
implementation performs static conversions, but does not perform the kinematics calculations 
required to simulate the movements of the entities over time. 
 
The types of entity state information that may be transformed using the SRM software 
implementation include: 

• Position – the location of a particle, or of the center of mass of a rigid body, with respect 
to a specific spatial reference frame, 

• Orientation – in general, the relationship between the axes of two linear spatial reference 
frames; in particular, the relationship between the coordinate axes of a rigid body, and the 
coordinate axes of a local tangent frame of a given world spatial reference frame, 

• Velocity – the instantaneous rate of change of displacement (i.e., change of position) of a 
particle or rigid body, 

• Angular Velocity – the instantaneous rate of rotation of a point or rigid body about an 
axis, 

• Acceleration – the instantaneous rate of change of velocity of a particle or rigid body, and 
• Angular Acceleration – the instantaneous rate of change of angular velocity of a point or 

rigid body. 
 
Orientation may be represented in several ways, including axis-angle pairs, Euler angles, Tait-
Bryan angles, 3x3 rotation matrices, and quaternions.  Velocity, angular velocity, acceleration, 
and angular acceleration may be represented as vectors. 
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3 API Overview 
This section provides a brief overview of the elements of the SRM API that are referred to in this 
user’s manual.  More complete and detailed information is contained in the SRM API 
documentation.  Readers who are already familiar with the SRM API may prefer to skip this 
section. 
 
The examples in this user’s manual use the C++ language binding of the SRM API.  Note that, 
for brevity, a number of elements that would be required in compilable source code are omitted.  
For example, the SRM namespace is assumed.  Also, exception handling is ignored, although 
production code should always use try/catch blocks. 
 
This user’s manual makes use of a hierarchical collection of object classes and their associated 
methods.  These are briefly summarized below. 
 
Figure 3-1 summarizes the classes and methods in the portion of the SRM API class hierarchy 
that is referred to in this user’s manual.  As shown in the figure, these classes are organized into 
two hierarchies.  The spatial reference frame (SRF) class hierarchy is shown on the left side of 
the figure.  The orientation class hierarchy is shown on the right side of the figure. 

3.1 SRF Classes 
The SRF class hierarchy includes classes that represent various types of spatial reference frames.  
Note that Figure 3-1 shows only the subset of the classes defined by the SRM API that are 
referenced within this user’s manual.  See the SRM API documentation for a more 
comprehensive description of the SRF class hierarchy. 

3.1.1 BaseSRF 
The class BaseSRF is the abstract base class for all SRF classes.  It provides several common 
methods to return coded values identifying the SRF and its associated Object Reference Model 
(ORM), Reference Transformation (RT), and Coordinate System (CS). 

3.1.2 BaseSRF_3D 
The class BaseSRF_3D is the abstract base class for all 3D SRF classes.  It is a subclass of 
BaseSRF.  It defines the following methods that are referenced within this user’s manual: 

1) createCoordinate3D, 
2) getCoordinate3DValues, 
3) freeCoordinate3D, 
4) changeCoordinate3DSRF, 
5) createDirection, 
6) freeDirection, 
7) createLococentricEuclidean3DSRF. 
8) transformOrientation, 
9) transformOrientationCommonOrigin, 
10) transformVector, 
11) transformVectorCommonOrigin, 
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 class SRM 4.4 OV API
BaseSRF

BaseSRF_3D

+ createCoordinate3D() : Coord3D * 
+ getCoordinate3DValues() : void
+ freeCoordinate3D() : void
+ changeCoordinate3DSRF() : SRM_Coordinate_Valid_Region 
+ createDirection() : Direction *
+ freeDirection() : void
+ createLococentricEuclidean3DSRF() : SRF_LococentricEuclidean3D *
+ transformOrientation() : void
+ transformOrientationCommonOrigin() : SRM_Coordinate_Valid_Region
+ transformVector() : void
+ transformVectorCommonOrigin() : SRM_Coordinate_Valid_Region 
+ transformVectorInBodyFrame() : void
+ transformVectorInBodyFrameCommonOrigin() : SRM_Coordinate_Valid_Region

SRF_LococentricEuclidean3D

+ create() : SRF_LococentricEuclidean3D *

BaseSRF_WithTangentPlaneSurface

SRF_LocalTangentSpaceEuclidean

+ create() : SRF_LocalTangentSpaceEuclidean *

Orientation

+ getMatrix3x3() : SRM_Matrix_3x3
+ getAxisAngle() : SRM_Axis_Angle_Params 
+ getEulerAnglesZXZ() : SRM_Euler_Angles_ZXZ_Params 
+ getTaitBryanAngles() : SRM_Tait_Bryan_Angles_Params
+ getQuaternion() : SRM_Quaternion_Params
+ setMatrix3x3() : void
+ setAxisAngle() : void
+ setEulerAnglesZXZ() : void
+ setTaitBryanAngles() : void
+ setQuaternion() : void
+ transformVector() : SRM_Vector_3D 

OrientationAxisAngle

+ getAxisAngle() : SRM_Axis_Angle_Params 
+ setAxisAngle() : void
+ compose() : OrientationAxisAngle

OrientationEulerAnglesZXZ

+ getEulerAnglesZXZ() : SRM_Euler_Angles_ZXZ_Params 
+ setEulerAnglesZXZ() : void
+ compose() : OrientationEulerAnglesZXZ

OrientationMatrix

+ getMatrix3x3() : SRM_Matrix_3x3
+ setMatrix3x3() : void
+ compose() : OrientationMatrix

OrientationQuaternion

+ getQuaternion() : SRM_Quaternion_Params
+ setQuaternion() : void
+ compose() : OrientationQuaternion

OrientationTaitBryanAngles

+ getTaitBryanAngles() : SRM_Tait_Bryan_Angles_Params
+ setTaitBryanAngles() : void
+ compose() : OrientationTaitBryanAngles

SRF_Celestiodetic

+ create() : SRF_Celestiodetic

SRF_Celestiocentric

+ create() : SRF_Celestiocentric

BaseSRF_WithEllipsoidalHeight

 
Figure 3-1.  Subset of SRM Classes & Methods 

 
12) transformVectorInBodyFrame, and 
13) transformVectorInBodyFrameCommonOrigin. 
 

It also defines a number of other methods.  See the SRM API documentation for a complete 
description of these. 
 
The methods createCoordinate3D, getCoordinate3DValues, freeCoordinate3D, and 
changeCoordinate3DSRF are used in dealing with position information.  The method 
createCoordinate3D creates a Coord3D object from three coordinate component values that are 
specified as input parameters.  The method getCoordinate3DValues outputs the three 
coordinate component values of a specified Coord3D object.  The method 
changeCoordinate3DSRF transforms a specified Coord3D object from a specified source SRF to 
the target SRF.  The method freeCoordinate3D releases a Coord3D object. 
 
The methods createDirection, and freeDirection are used in dealing with direction 
information.  The method createDirection creates a Direction object from a reference 
Coord3D object and a 3D vector that are specified as input parameters.  The method 
freeDirection releases a Direction object. 
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The method createLococentricEuclidean3DSRF creates a SRF_LococentricEuclidean3D 
SRF relative to a given SRF, with its origin at a specified lococentre coordinate and its 
orientation determined by specified primary and secondary axis directions.  It is used in the 
examples below to create platform body and component-based SRFs (see sections 4.2.2 and 
4.2.3). 
 
The methods transformOrientation and transformOrientationCommonOrigin are used in 
dealing with orientation information (see section 6).  The method transformOrientation 
transforms a specified Orientation object with respect to a local tangent frame associated with 
a specified source reference coordinate in the source SRF, to the local tangent frame associated 
with the specified target reference coordinate in the target SRF.  The method 
transformOrientationCommonOrigin is similar, but uses the same reference location for both 
the source and target SRFs, transforming the specified Coord3D object from the source SRF to 
the target SRF. 
 
The methods transformVector, transformVectorCommonOrigin, 
transformVectorInBodyFrame, and transformVectorInBodyFrameCommonOrigin are used in 
dealing with vector quantities, such as velocity and acceleration information (see section 7).  The 
method transformVector transforms a specified vector quantity with respect to a local tangent 
frame associated with a specified source reference coordinate in the source SRF, to the local 
tangent frame associated with a specified target reference coordinate in the target SRF.  The 
method transformVectorCommonOrigin is similar, but uses the same reference location for 
both the source and target SRFs.  The methods transformVectorInBodyFrame and 
transformVectorInBodyFrameCommonOrigin allow the source vector to be specified in terms 
of a body frame rather than a local tangent frame, by specifying the orientation of the body frame 
with respect to a local tangent frame. 

3.1.3 SRF_Celestiocentric 
The class SRF_Celestiocentric is derived from BaseSRF3D and defines SRFs that use a 
Euclidean 3D coordinate system in which the origin is located at the center of mass of a celestial 
body, the xy-plane is the plane of the equator, and the xz-plane contains the prime meridian.  In 
this manual, it is used to define the Geocentric WGS 1984 SRF (see section 4.1.2). 

3.1.4 BaseSRF_WithEllipsoidalHeight 
The class BaseSRF_WithEllipsoidalHeight is an abstract class that is derived from 
BaseSRF3D.  It is the parent class of SRF_Celestiodetic (see below), as well as other SRF 
classes that use coordinate systems based on the surface of an oblate ellipsoid. 

3.1.5 SRF_Celestiodetic 
The class SRF_Celestiodetic is derived from BaseSRF3D defines SRFs that use a geodetic 3D 
coordinate system, with coordinate-components longitude (λ ) and latitude (ϕ ), in radians, and 
ellipsoidal height (h), in meters.  In this manual, it is used to define the Geodetic WGS 1984 SRF 
(see section 4.1.1). 
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3.1.6 BaseSRF_WithTangentPlaneSurface 
The class BaseSRF_WithTangentPlaneSurface is an abstract class that is derived from 
BaseSRF3D.  It is the parent class of SRF_LocalTangentSpaceEuclidean (see below), as well as 
other SRF classes that use coordinate systems based on planes tangent to the surface of an oblate 
ellipsoid. 

3.1.7 SRF_LocalTangentSpaceEuclidean 
The class SRF_LocalTangentSpaceEuclidean defines SRFs that use a Euclidean 3D coordinate 
system in which the xy-plane is tangent to the surface of the oblate ellipsoid that defines the 
Earth reference model.  In this manual, it is used to describe local SRFs for test/training ranges.  
See section 4.2.1 for more details on this type of SRF. 

3.1.8 SRF_LococentricEuclidean3D 
The class SRF_LococentricEuclidean3D defines SRFs that use a Lococentric Euclidean 3D 
coordinate system.  In this manual, it is used to define SRFs for individual entities such as tanks 
and aircraft, and individual entity components such as turrets (see sections 4.2.2 and 4.2.3). 

3.2 Orientation Classes 
The orientation class hierarchy consists of classes that represent the orientation of one SRF with 
respect to another.  As shown in Figure 3-1, it consists of an abstract class with five concrete 
subclasses. 

3.2.1 Orientation 
The class Orientation represents the orientation of one SRF with respect to another.  It 
provides methods that are common to all orientation representations.  It provides the following 
methods that are referenced within this user’s manual: 

1) getMatrix3x3, 
2) getAxisAngle, 
3) getEulerAnglesZXZ, 
4) getTaitBryanAngles, 
5) getQuaternion, 
6) setMatrix3x3, 
7) setAxisAngle, 
8) setEulerAnglesZXZ, 
9) setTaitBryanAngles, 
10) setQuaternion, and 
11) transformVector. 

The first five of these methods return the desired representation of the Orientation object (see 
6.2). The next five methods allow the state of the Orientation object to be set using any of the 
five supported representations. The Orientation class also defines a number of other methods.  
See the SRM API documentation for a complete description of these. 
 
The method transformVector transforms the representation of a three-dimensional vector from 
the source SRF of an Orientation object to the target SRF of that Orientation object. 
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The static method compose, which is implemented by each of the subclasses, composes two 
given Orientation objects and returns the resulting Orientation object.  Thus, if S1, S2, and S3 
are three SRFs, Orientation12 is the orientation of S1 with respect to S2, and Orientation23 is 
the orientation of S2 with respect to S3, then the composition of these two orientations is 
Orientation13, the orientation of S1 with respect to S3. 

3.2.2 OrientationAxisAngle 
The class OrientationAxisAngle is used to create and access orientation information using an 
axis-angle representation.  See section 6.2.1 for more detail on this representation of orientations. 

3.2.3 OrientationEulerAnglesZXZ 
The class OrientationEulerAnglesZXZ is used to create and access orientation information 
using an Euler angle ZXZ representation.  See section 6.2.2 for more detail on this representation 
of orientations. 

3.2.4 OrientationTaitBryanAngles 
The class OrientationTaitBryanAngles is used to create and access orientation information 
using a Tait-Bryan angle representation.  See section 6.2.3 for more detail on this representation 
of orientations. 

3.2.5 OrientationMatrix 
The class OrientationMatrix is used to create and access orientation information using a 3x3 
rotation matrix representation.  See section 6.2.4 for more detail on this representation of 
orientations. 

3.2.6 OrientationQuaternion 
The class OrientationQuaternion is used to create and access orientation information using a 
quaternion representation.  See section 6.2.5 for more detail on this representation of 
orientations. 
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4 Example Framework 
This section presents the context for the examples that are presented throughout the subsequent 
sections of this document.  These examples use several types of spatial reference frames, and 
several types of ground and airborne platforms, including some with articulated components, to 
illustrate the types of entity state transformations that may be performed using the SRM API.  
These examples do not reflect the full range of spatial reference frames supported by the SRM 
API, nor do they reflect the full range of entity types that can be represented. 
 
The overall example framework is shown in Figure 4-1.  Two test/training ranges are located 
adjacent to each other, each with its own spatial reference frame (SRF).  The spatial extents of 
these two test/training range SRFs overlap somewhat.  Note that, due to the curvature of the 
Earth’s surface, the axes of these two SRFs are not parallel to each other.  Ground forces are 
operating on both test/training ranges.  One force (green) is operating primarily on Range 1, 
while another force (orange) is operating primarily on Range 2.  Aircraft associated with both 
forces are operating overhead. 
 

 
Figure 4-1.  Example Framework 

 
Each platform has its own local spatial reference frame.  Associated with each aircraft is a local 
SRF, with axes defined in terms of the body of the aircraft.  Similarly, each tank has a local hull 
SRF.  Each tank turret and tank gun also has its own local SRF. 

4.1 Global SRFs 
To illustrate typical position, orientation, and vector quantity transformations, the examples in 
the subsequent sections use two global SRFs:  the Geodetic WGS 1984 SRF; and the Geocentric 
WGS 1984 SRF.  The Geodetic WGS 1984 SRF is used in the examples to specify the positions, 
orientations, and other state elements of various entities in global terms.  The Geocentric WGS 
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1984 SRF is commonly used by applications to exchange entity state information using protocols 
such as the Distributed Interactive Simulation (DIS) standard1, and so is also included in the 
examples. 
 

 
Figure 4-2.  Global Geodetic and Geocentric SRFs 

4.1.1 Geodetic WGS 1984 SRF 
This is the standardized spatial reference frame identified by the SRM as 
SRM_SRFCOD_GEODETIC_WGS_1984.  As shown in Figure 4-2, it uses a geodetic 3D coordinate 
system, with coordinate-components longitude (λ ) and latitude (ϕ ), in radians, and ellipsoidal 
height (h), in meters, with the World Geodetic System 1984 Earth reference model 
(SRM_ORMCOD_WGS_1984).  The valid region for this SRF includes the surface of the oblate 
ellipsoid that represents the Earth and its vicinity. 
 
Using the SRM API, this SRF may be instantiated as follows: 
 
    Geodetic_WGS84_SRF = SRF_Celestiodetic::create( 
            SRM_ORMCOD_WGS_1984,  // Object Reference Model code 
            SRM_RTCOD_WGS_1984_IDENTITY); // Reference Transformation code 
 

                                                 
1 IEEE 1278.1-1995. 
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Note that this SRF is a curvilinear SRF, i.e., it is based on a curvilinear coordinate system that is 
referenced to the surface of the WGS 1984 ellipsoid.  As a result, directions, orientations, and 
vector quantities that are specified with respect to this SRF are not independent of location.  For 
example, a vector with component values (0, 0, 1), i.e., a vector pointing “up”, denotes very 
different directions, depending on whether it is located at the North pole, at the intersection of 
the equator and the prime meridian, or at the South pole.  Therefore, whenever a direction, 
orientation, or vector quantity is specified with respect to this SRF, or any other curvilinear SRF, 
a reference location must also be specified.  This reference location serves as the origin of a 
Local Tangent Space Euclidean (LTSE) SRF, which provides the basis for the vector component 
values.  The methods provided by the SRM API that are concerned with directions, orientations, 
and vector quantities include reference location parameters, which are required regardless of 
whether or not the SRF is curvilinear. 

4.1.2 Geocentric WGS 1984 SRF 
This is the standardized spatial reference frame identified by the SRM as 
SRM_SRFCOD_GEOCENTRIC_WGS_1984.  As shown in Figure 4-2, it uses a Euclidean 3D 
coordinate system, with the axes x, y, and z, with the WGS 1984 Earth reference model.  Its 
origin is located at the center of mass of the Earth.  The xy-plane is the plane of the equator, 
while the xz-plane contains the prime meridian.  The valid region of this SRF includes the 
surface of the oblate ellipsoid that represents the Earth and its vicinity. 
 
Using the SRM API, this SRF may be instantiated as follows: 
 
    Geocentric_WGS84_SRF = SRF_Celestiocentric::create( 
            SRM_ORMCOD_WGS_1984, // Object Reference Model code 
            SRM_RTCOD_WGS_1984_IDENTITY);  // Reference Transformation code 
 
This SRF is a linear SRF, i.e., it is based on a linear coordinate system.  Directions, orientations, 
and vector quantities that are specified with respect to this SRF are independent of location.  For 
example, a vector with component values (0, 0, 1), always denotes the same direction, i.e., the 
direction of the positive Z axis, regardless of its location.  Therefore, whenever a reference 
location is required by the SRM API for a direction, orientation, or vector quantity that is 
specified with respect to this SRF, any convenient location may be chosen. 

4.2 Local SRFs 
Several types of local SRFs will also be addressed: 

1) Test/training-range-based SRFs, which each are tied to a specified reference location 
within one of the test/training ranges. 

2) Platform-based SRFs, which each are tied to the body of a specific moving platform, such 
as an aircraft or a tank. 

3) Component-based SRFs, which each are tied to a particular component of a specific 
platform, such as the turret of a tank. 

4.2.1 Test/Training-Range-Based SRFs 
A local SRF is defined for each of the two test/training ranges in the examples.  These two SRFs 
are illustrated in Figure 4-1.  The Range 1 SRF has its origin located at the southwest corner of 
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the westernmost range.  The Range 2 SRF has its origin located at the northeast corner of the 
easternmost range. 
 

 
Figure 4-3.  Local Tangent Space Euclidean SRF 

 
These two SRFs are both instances of the Local Tangent Space Euclidean (LTSE) SRF template.  
These SRFs use a Euclidean 3D coordinate system, with the axes x, y, and z.  As shown in Figure 
4-3, the origin is tied to a reference location specified by a geodetic coordinate (λ ,ϕ , h0).  The 
xy plane, shown in green, is parallel to the plane that is tangent to the ellipsoid surface of the 
WGS 1984 Earth reference model at the point (λ ,ϕ ).  The angle α is the geodetic azimuth of 
the y axis.  To avoid negative coordinate values, a false origin (xF, yF) may be specified. 
 
Such local SRFs are linear SRFs, i.e., they are based on linear coordinate systems.  Directions, 
orientations, and vector quantities that are specified with respect to such SRFs do not vary with 
location.  Therefore, whenever a reference location is required by the SRM API for a direction, 
orientation, or vector quantity that is specified with respect to such an SRF, any convenient 
location, such as the origin of the SRF, may be chosen. 
 
The ellipsoid heights of the origins of the two test/training range SRFs (see Figure 4-1) may 
differ from each other, since they are each located on the local terrain surface at their respective 
locations.  In these SRFs, each positive x axis points to local east, while each positive y axis 
points to local north.  The positive z axes point to local up.  Note that, because of the curvature of 
the earth, the two z axes are not parallel to each other. 
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Suppose that the origin points of the two test/training ranges are separated by two degrees in 
longitude, and by one degree in latitude direction.  The parameters for these test/training ranges 
could then be specified as: 
 
Range 1 SRF: 
 Origin longitude λ :  -121° 
 Origin latitude ϕ :  33° 
 Origin ellipsoidal height h0:  100 m 
 Rotation angle α :  0° 
 False origin xF:  0 m 
 False origin yF:  0 m 
 

Range 2 SRF: 
 Origin longitude λ :  -119° 
 Origin latitude ϕ :  34° 
 Origin ellipsoidal height h0:  200 m 
 Rotation angle α :  0° 
 False origin xF:  500,000 m 
 False origin yF:  500,000 m 

The data type SRM_LTSE_Parameters contains the parameters that are used to specify an LTSE 
SRF.  It includes parameters (longitude, latitude, and ellipsoidal height offset) that specify the 
origin location of the LTSE SRF.  By default, the positive x axis points to local east, while the 
positive y axis points to local north.  However, an azimuth parameter is included that can be used 
to explicitly rotate the x- and y-axes in the tangent plane.  The height offset parameter is used to 
locate the origin above or below the surface of the ellipsoid.  It also includes false origin offsets, 
so that negative coordinate values can be avoided. 
 
    typedef struct 
    { 
        Long_Float geodetic_longitude; /* radians */ 
        Long_Float geodetic_latitude; /* radians */ 
        Long_Float azimuth; /* radians */ 
        Long_Float x_false_origin; /* meters */ 
        Long_Float y_false_origin; /* meters */ 
        Long_Float height_offset; /* meters */ 
    } SRM_LTSE_Parameters; 
 
Using the SRM API, these LTSE SRFs can be instantiated as follows: 
 
    SRM_LTSE_Parameters Range1_LTSE_Parameters; 
 
    Range1_LTSE_Parameters.geodetic_longitude = -121.0 * degreesToRadians; 
    Range1_LTSE_Parameters.geodetic_latitude = 33.0 * degreesToRadians; 
    Range1_LTSE_Parameters.azimuth = 0.0; 
    Range1_LTSE_Parameters.x_false_origin = 0.0; 
    Range1_LTSE_Parameters.y_false_origin = 0.0; 
    Range1_LTSE_Parameters.height_offset = 100.0; 
 
    //SRF_LocalTangentSpaceEuclidean* Range1_SRF; 
 
    Range1_SRF = SRF_LocalTangentSpaceEuclidean::create( 
        SRM_ORMCOD_WGS_1984, // Object Reference Model code 
        SRM_RTCOD_WGS_1984_IDENTITY, // Reference Transformation code 
        Range1_LTSE_Parameters); // Local Tangent Space Euclidean params 
 
    SRM_LTSE_Parameters Range2_LTSE_Parameters; 
 
    Range2_LTSE_Parameters.geodetic_longitude = -119.0 * degreesToRadians; 
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    Range2_LTSE_Parameters.geodetic_latitude = 34.0 * degreesToRadians; 
    Range2_LTSE_Parameters.azimuth = 0.0; 
    Range2_LTSE_Parameters.x_false_origin = 500000.0; 
    Range2_LTSE_Parameters.y_false_origin = 500000.0; 
    Range2_LTSE_Parameters.height_offset = 200.0; 
 
    //SRF_LocalTangentSpaceEuclidean* Range2_SRF; 
 
    Range2_SRF = SRF_LocalTangentSpaceEuclidean::create( 
        SRM_ORMCOD_WGS_1984, // Object Reference Model code 
        SRM_RTCOD_WGS_1984_IDENTITY, // Reference Transformation code 
        Range2_LTSE_Parameters); // Local Tangent Space Euclidean params 
 

 
Figure 4-4.  Aircraft Spatial Reference Frame 

4.2.2 Platform-Based SRFs 
For each moving platform, such as a tank or an aircraft, a platform-based SRF can be defined.  
These SRFs are instances of the SRF_LococentricEuclidean3D class.  Such SRFs use a 
Lococentric Euclidean 3D coordinate system, with axis unit vectors u, v, and w, and units in 
meters.  As shown in Figures 4-4 and 4-5, the origin is specified by a lococentre, shown as a red 
sphere, which specifies the current position of the platform in the appropriate test/training range 
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SRF.  The position of the platform is typically represented by its center of mass2.  The 
orientation of the lococentric axes is determined by the current orientation of the platform’s body 
or hull.  This is specified by two direction vectors, also shown in red, with respect to the 
appropriate test/training range SRF.  These primary and secondary axis direction vectors are 
parallel to the corresponding platform body axes.  The axes of the lococentric platform-based 
SRFs are shown in green in Figures 4-4 and 4-5.  The positive u axis points out the front of the 
platform.  The positive v axis points out the right side of the platform.  The positive w axis points 
down out of the bottom of the platform.3 
 
Such platform-based SRFs are linear SRFs, i.e., they are based on linear coordinate systems.  
Directions, orientations, and vector quantities that are specified with respect to such SRFs do not 
vary with location.  Therefore, whenever a reference location is required by the SRM API for a 
direction, orientation, or vector quantity that is specified with respect to such an SRF, any 
convenient location, such as the origin of the SRF, may be chosen. 
 
The following example creates a platform-based SRF for a particular aircraft.  Let c, with 
components (cx, cy, cz), be the coordinate of the aircraft body center of mass with respect to the 
Range1_SRF at a particular time.  This location is the lococentre (or origin) for the aircraft body 
SRF (see Figure 4-4).  Let the vectors p, with components (px, py, pz), and s, with components 
(sx, sy, sz), be unit vectors with respect to the Range1_SRF, which are parallel to the aircraft body 
primary and secondary axes, ubody and vbody

4,. Using the SRM API, the aircraft body SRF can be 
instantiated as follows:  
 
    // Aircraft Body SRF 
    SRF_LococentricEuclidean3D* Body_SRF; 
    { 
        SRM_Long_Float cx = 5000.0, cy = 10000.0, cz = 5000.0; // meters 
        SRM_Long_Float px = -0.4330127, py = 0.75, pz = 0.5; 
            // theta = 30 degrees, lambda = 120 degrees 
        SRM_Long_Float sx = 0.8660254, sy = 0.5, sz = 0.0; 
 
        // Lococentre 
        Coord3D* lococentre = Range1_SRF->createCoordinate3D(cx, cy, cz); 
        //Reference location for creating directions – using, for example, 
        // the Range1_SRF origin 
        Coord3D* ref_coord = Range1_SRF->createCoordinate3D(0.0, 0.0, 0.0); 
        // Primary axis direction vector 
        Direction* primary_axis_direction = Range1_SRF->createDirection( 
            *ref_coord, px, py, pz); 
        // Secondary axis direction vector 
        Direction* secondary_axis_direction = Range1_SRF->createDirection( 
            *ref_coord, sx, sy, sz); 
 
 

                                                 
2 Note that, in general, the center of mass may not be static over time, as an aircraft expends fuel, jettisons 
munitions, etc.  Also, note that the DIS protocol specifies the reference point to be the volumetric barycenter of the 
platform body, i.e., the geometric center of the volume that it occupies. 
3 This arrangement of the axes with respect to the platform body conforms to the DIS protocol. 
4 In the figure, these unit vectors have been lengthened to make them more visible, and to emphasize that they are 
parallel to the aircraft body axes. 
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        Body_SRF = Range1_SRF->createLococentricEuclidean3DSRF( 
            *lococentre, 
            *primary_axis_direction, 
            *secondary_axis_direction); 
    } 
 

 
Figure 4-5.  Tank Spatial Reference Frame 

 
The next example creates a platform-based SRF for a particular tank.  Let c, with components 
(cx, cy, cz), be the coordinate of the tank hull center of mass with respect to the Range1_SRF at a 
particular time.  This location is the lococentre (or origin) for the tank hull SRF (see Figure 4-5).   
Let the vectors p, with components (px, py, pz), and s, with components (sx, sy, sz), be unit vectors 
with respect to the Range1_SRF, which are parallel to the tank hull primary and secondary axes, 
uhull and vhull, respectively.  Using the SRM API, the tank hull SRF can be instantiated as 
follows:  
 
    // Tank Hull SRF 
    SRF_LococentricEuclidean3D* Hull_SRF; 
    { 
        SRM_Long_Float cx = 2000.0, cy = 5000.0, cz = 500.0; // meters 
        SRM_Long_Float px = 0.25, py = 0.9330127, pz = 0.25881905; 
            // theta = 75 degrees, lambda = 15 degrees 
        SRM_Long_Float sx = 0.96592583, sy = -0.25881905, sz = 0.0; 
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        // Lococentre 
        Coord3D* lococentre = Range1_SRF->createCoordinate3D(cx, cy, cz); 
        //Reference location for creating directions – using, for example, 
        // the Range1_SRF origin 
        Coord3D* ref_coord = Range1_SRF->createCoordinate3D(0.0, 0.0, 0.0); 
        // Primary axis direction vector 
        Direction* primary_axis_direction = Range1_SRF->createDirection( 
            *ref_coord, px, py, pz); 
        // Secondary axis direction vector 
        Direction* secondary_axis_direction = Range1_SRF->createDirection( 
            *ref_coord, sx, sy, sz); 
 
        Hull_SRF = Range1_SRF->createLococentricEuclidean3DSRF( 
            *lococentre, 
            *primary_axis_direction, 
            *secondary_axis_direction); 
 
        Range1_SRF->freeDirection(secondary_axis_direction); 
        Range1_SRF->freeDirection(primary_axis_direction); 
        Range1_SRF->freeCoordinate3D(ref_coord); 
        Range1_SRF->freeCoordinate3D(lococentre); 
    } 
 

 
Figure 4-6.  Tank Turret Spatial Reference Frame 
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4.2.3 Component-Based SRFs 
Local SRFs can also be defined for articulated components of a platform.  For example, for each 
tank, local SRFs can be defined for its turret, which rotates with respect to the hull, and for its 
gun, which can change its elevation angle with respect to the turret.  Such SRFs are also 
instances of the Lococentric Euclidean 3D SRF template, which use a Lococentric Euclidean 3D 
coordinate system, with axis unit vectors u, v, and w, and units in meters. 
 
Such component-based SRFs are linear SRFs, i.e., they are based on linear coordinate systems.  
Directions, orientations, and vector quantities that are specified with respect to such SRFs do not 
vary with location.  Therefore, whenever a reference location is required by the SRM API for a 
direction, orientation, or vector quantity that is specified with respect to such an SRF, any 
convenient location, such as the origin of the SRF, may be chosen. 
 
The origin of the turret coordinate system is a point on the axis of rotation of the turret, specified 
in terms of the tank’s local hull SRF.  The orientation of the lococentric axes is determined by 
the current orientation of the turret, with respect to the hull.  In Figure 4-6, the lococentre and the 
primary and secondary axis direction vectors that relate the turret coordinate system to the hull 
coordinate system are shown in red.  The lococentric axes of the turret are shown in green with 
the subscript “turret”.  The positive u axis points out the front of the turret.  The positive v axis 
points out the right side of the turret.  The positive w axis points down out the bottom of the 
turret, parallel to the positive w axis of the hull.  The turret coordinate system has only one 
degree of freedom, i.e., rotation about the turret’s w axis. 
 
The next example creates a local SRF for the turret of a particular tank.  Let t, with components 
(tu, tv, tw), be the lococentre of the turret with respect to the Hull_SRF (see Figure 4-6).  Let the 
vectors p, with components (pu, pv, pw), and s, with components (su, sv, sw), be unit vectors with 
respect to the Hull_SRF, which are parallel to the turret primary and secondary axes, uturret and 
vturret, respectively.  Using the SRM API, the turret SRF can be instantiated as follows:  
 
    // Tank Turret SRF 
    SRF_LococentricEuclidean3D* Turret_SRF; 
    { 
        SRM_Long_Float tu = 2.0, tv = 0.0, tw = -2.0; 
        SRM_Long_Float pu = 0.70710678, pv = -0.70710678, pw = 0.0; 
            // theta = 0 degrees, lambda = -45 degrees 
        SRM_Long_Float su = 0.70710678, sv = 0.70710678, sw = 0.0; 
 
        // Lococentre 
        Coord3D* lococentre = Hull_SRF->createCoordinate3D(tu, tv, tw); 
        //Reference location for creating directions – using, for example, 
        // the Hull_SRF origin 
        Coord3D* ref_coord = Hull_SRF->createCoordinate3D(0.0, 0.0, 0.0); 
        // Primary axis direction vector 
        Direction* primary_axis_direction = Hull_SRF->createDirection( 
            *ref_coord, pu, pv, pw); 
        // Secondary axis direction vector 
        Direction* secondary_axis_direction = Hull_SRF->createDirection( 
            *ref_coord, su, sv, sw); 
        // Turret SRF 
        Turret_SRF = Hull_SRF->createLococentricEuclidean3DSRF( 



SRM Orientation, Velocity & Acceleration Transformations Version 2.0, 18 Nov 2009 

22 

            *lococentre, 
            *primary_axis_direction, 
            *secondary_axis_direction); 
 
        Hull_SRF->freeDirection(secondary_axis_direction); 
        Hull_SRF->freeDirection(primary_axis_direction); 
        Hull_SRF->freeCoordinate3D(ref_coord); 
        Hull_SRF->freeCoordinate3D(lococentre); 
    } 
 
The origin of the gun coordinate system is the point along the long axis of the gun about which it 
rotates to change its elevation angle.  The orientation of the axes of the gun coordinate system is 
determined by the current elevation angle of the gun, with respect to the turret.  In Figure 4-7, the 
lococentre and the primary and secondary axis direction vectors that relate the gun coordinate 
system to the turret coordinate system are shown in red.  The lococentric axes of the gun are 
shown in green with the subscript “gun”.  The positive u axis points out the barrel of the gun.  
The positive v axis points to the right, perpendicular to the gun barrel, and parallel to the positive 
v axis of the turret.  The positive w axis points down, perpendicular to the gun barrel, as well as 
perpendicular to the v axis. 
 

 
Figure 4-7.  Tank Gun Spatial Reference Frame 
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The final example creates a local SRF for the gun of the tank.  Let g, with components (gu, gv, 
gw), be the lococentre of the gun with respect to the Turret_SRF (see Figure 4-7).  Let the 
vectors p, with components (pu, pv, pw), and s, with components (su, sv, sw), be unit vectors with 
respect to the Turret_SRF, which are parallel to the gun primary and secondary axes, , ugun and 
vgun, respectively.  Using the SRM API, the gun SRF can be instantiated as follows:  
 
    // Tank Gun SRF 
    SRF_LococentricEuclidean3D* Gun_SRF; 
    { 
        SRM_Long_Float gu = 3.0, gv = 0.0, gw = 0.0; // meters 
        SRM_Long_Float pu = 0.96592583, pv = 0.0, pw = -0.25881905; 
            // theta = -15 degrees, lambda = 0 degrees 
        SRM_Long_Float su = 0.0, sv = 1.0, sw = 0.0; 
 
        // Lococentre 
        Coord3D* lococentre = Turret_SRF->createCoordinate3D(gu, gv, gw); 
        //Reference location for creating directions – using, for example, 
        // the Turret_SRF origin 
        Coord3D* ref_coord = Turret_SRF->createCoordinate3D(0.0, 0.0, 0.0); 
        // Primary axis direction vector 
        Direction* primary_axis_direction = Turret_SRF->createDirection( 
            *ref_coord, pu, pv, pw); 
        // Secondary axis direction vector 
        Direction* secondary_axis_direction = Turret_SRF->createDirection( 
            *ref_coord, su, sv, sw); 
        // Gun SRF 
        Gun_SRF = Turret_SRF->createLococentricEuclidean3DSRF( 
            *lococentre, 
            *primary_axis_direction, 
            *secondary_axis_direction); 
 
        Turret_SRF->freeDirection(secondary_axis_direction); 
        Turret_SRF->freeDirection(primary_axis_direction); 
        Turret_SRF->freeCoordinate3D(ref_coord); 
        Turret_SRF->freeCoordinate3D(lococentre); 
    } 
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5 Position 
This section addresses the transformation of position information from one spatial reference 
frame to another. 

5.1 Concept 
Position refers to the location of a particle or rigid body with respect to a specific spatial 
reference frame, in either two or three dimensions.  All of the spatial reference frames that will 
be used here are three-dimensional.  As shown in Figure 5-1, position can be considered to be a 
vector from the origin of the SRF to the location of the particle or rigid body.  It is usually 
symbolized as p.  The coordinate axis names and the associated units vary, depending on the 
nature of the SRF. 
 
The position of a rigid body is denoted by a representative point, which is usually, but not 
always, considered to be at the center of mass of that body. 
 

 
Figure 5-1.  Position. 

5.2 Transformation procedure 
The general procedure for transforming a position from one SRF to another is: 
1) Create the source SRF object, as shown in Section 4. 
2) Create the target SRF object, as shown in Section 4. 
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3) Create a Coord3D object using the createCoordinate3D method of the source SRF object. 
4) Obtain the equivalent Coord3D object for the target SRF by using the changeCoordinate3D 

method of the target SRF object. 
 
The method createCoordinate3D creates a Coord3D object from three coordinate component 
values that are specified as input parameters.  As used in this manual, it is invoked as follows: 
 
    Coord3D* coordinate = SRF->createCoordinate3D ( 

first_coordinate_component, /* input, Long_Float */ 
second_coordinate_component, /* input, Long_Float */ 
third_coordinate_component); /* input, Long_Float */ 

 
The method getCoordinate3DValues outputs the three coordinate component values of a 
specified Coord3D object.  As used in this manual, it is invoked as follows. 
 
    SRF->getCoordinate3DValues (coordinate, /* input, Coord3D */ 

first_coordinate_component, /* output, Long_Float */ 
second_coordinate_component, /* output, Long_Float */ 
third_coordinate_component); /* output, Long_Float */ 

 
The method changeCoordinate3DSRF transforms a specified Coord3D object from a specified 
source SRF to the target SRF.  As used in this manual, it is invoked as follows. 
 
    SRM_Coordinate_Valid_Region valid_region =  
        target_SRF->changeCoordinate3DSRF ( 

source_coordinate, /* input, Coord3D */ 
target_coordinate); /* output, Coord3D */ 

The enumerated type SRM_Coordinate_Valid_Region describes the position of a coordinate 
with respect to the defined valid region of a specified SRF. 
    typedef enum 
    { 
   SRM_COORDVALRGN_VALID,  
   SRM_COORDVALRGN_EXTENDED_VALID, 
   SRM_COORDVALRGN_DEFINED ) 
    } SRM_Coordinate_Valid_Region; 
 
Its possible values are: 

VALID – the position is within the valid region of the specified SRF. 
EXTENDED_VALID – the position is outside the valid region, but is within the extended valid 
region, of the specified SRF. 
DEFINED – the position is not within either the valid region or the extended valid region of 
the specified SRF, but is in the domain of the coordinate system generating function. 

5.3 Examples 
The following examples show how to transform positions between the various SRFs defined in 
Section 4. 

5.3.1 Transform Between Range SRFs 
Example 1:  Transform the position of a tank from the Range 1 SRF to the Range 2 SRF. 
1) Create the SRF object for the Range 1 SRF (see Section 4.2.1). 
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2) Create the SRF object for the Range 2 SRF (see Section 4.2.1). 
3) Create a Coord3D object using the createCoordinate3D method of the Range 1 SRF object. 
 
    SRM_Long_Float tank_range1_x = 2000.0, tank_range1_y = 5000.0, 
        tank_range1_z = 500.0; // meters 
 
    Coord3D* range1_coordinate = Range1_SRF->createCoordinate3D( 
        tank_range1_x, 
        tank_range1_y, 
        tank_range1_z); 
 
4) Obtain the equivalent Coord3D object for the Range 2 SRF by using the 

changeCoordinate3D method of the Range 2 SRF object. 
 
    Coord3D* range2_coordinate = Range2_SRF->createCoordinate3D( 

  0.0, 0.0, 0.0); 
 
    SRM_Coordinate_Valid_Region region = Range2_SRF->changeCoordinate3DSRF( 
        *range1_coordinate, 
        *range2_coordinate); 
 
    SRM_Long_Float tank_range2_x = 0.0, tank_range2_y = 0.0,  

  tank_range2_z = 0.0; 
 
    Range2_SRF->getCoordinate3DValues(*range2_coordinate, 
        tank_range2_x, 
        tank_range2_y, 
        tank_range2_z); 
 
The output parameter region indicates the status of the resulting coordinate with respect to the 
valid region, and extended valid region, of the target SRF (see 5.2). 

5.3.2 Transform From Range to Geocentric 
Example 2:  Transform the position of a tank from the Range 1 SRF to the Geocentric WGS 
1984 SRF. 
1) Create the SRF object for the Range 1 SRF (see Section 4.2.1). 
2) Create the SRF object for the Geocentric WGS 1984 SRF (see Section 4.1.2). 
3) Create a Coord3D object using the createCoordinate3DSRF method of the Range 1 SRF 

object. 
 
    SRM_Long_Float tank_range1_x = 2000.0, tank_range1_y = 5000.0, 
        tank_range1_z = 500.0; // meters 
 
    Coord3D* range1_coordinate = Range1_SRF->createCoordinate3D( 
        tank_range1_x, 
        tank_range1_y, 
        tank_range1_z); 
 
4) Obtain the equivalent Coord3D object for the Geocentric WGS 1984 SRF by using the 

changeCoordinate3D method of the Geocentric WGS 1984 SRF object. 
 
    Coord3D* geocentric_coordinate =  
        Geocentric_WGS84_SRF->createCoordinate3D(0.0, 0.0, 0.0); 
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    SRM_Coordinate_Valid_Region region =  
        Geocentric_WGS84_SRF->changeCoordinate3DSRF( 
             *range1_coordinate, 
             *geocentric_coordinate); 
 
    SRM_Long_Float tank_geocentric_x = 0.0, tank_geocentric_y = 0.0, 
        tank_geocentric_z = 0.0; 
 
    Geocentric_WGS84_SRF->getCoordinate3DValues(*geocentric_coordinate, 
        tank_geocentric_x, 
        tank_geocentric_y, 
        tank_geocentric_z); 

5.3.3 Transform From Range to Geodetic 
Example 3:  Transform the position of a tank from the Range 2 SRF to the Geodetic WGS 1984 
SRF. 
1) Create the SRF object for the Range 2 SRF (see Section 4.2.1). 
2) Create the SRF object for the Geodetic WGS 1984 SRF (see Section 4.1.1). 
3) Create a Coord3D object using the createCoordinate3DSRF method of the Range 2 SRF 

object. 
 
    SRM_Long_Float tank_range2_x = -5000.0, tank_range2_y = -3000.0, 
        tank_range2_z = 400.0; // meters 
 
    Coord3D* range2_coordinate = Range2_SRF->createCoordinate3D( 
        tank_range2_x, 
        tank_range2_y, 
        tank_range2_z); 
 
4) Obtain the equivalent Coord3D object for the Geodetic WGS 1984 SRF by using the 

changeCoordinate3D method of the Geodetic WGS 1984 SRF object. 
 
    Coord3D* geodetic_coordinate =  
        Geodetic_WGS84_SRF->createCoordinate3D(0.0, 0.0, 0.0); 
 
    SRM_Coordinate_Valid_Region region =  
        Geodetic_WGS84_SRF->changeCoordinate3DSRF( 
             *range2_coordinate, 
             *geodetic_coordinate); 
 
    SRM_Long_Float tank_geodetic_longitude = 0.0,  
        tank_geodetic_latitude = 0.0, tank_ellipsoidal_height = 0.0; 
 
    Geodetic_WGS84_SRF->getCoordinate3DValues(*geodetic_coordinate, 
        tank_geodetic_longitude, 
        tank_geodetic_latitude, 
        tank_ellipsoidal_height); 

5.3.4 Transform From Geodetic to Geocentric 
Example 4:  Transform the position of an aircraft from the Geodetic WGS 1984 SRF to the 
Geocentric WGS 1984 SRF. 
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1) Create the SRF object for the Geodetic WGS 1984 SRF (see Section 4.1.1). 
2) Create the SRF object for the Geocentric WGS 1984 SRF (see Section 4.1.2). 
3) Create a Coord3D object using the createCoordinate3DSRF method of the Geodetic WGS 

1984 SRF object. 
 
    SRM_Long_Float aircraft_longitude = -120.5 * degreesToRadians, 
        aircraft_latitude = 33.5 * degreesToRadians, 
        aircraft_ellipsoidal_height = 5000.0; // meters 
 
    Coord3D* geodetic_coordinate = Geodetic_WGS84_SRF->createCoordinate3D( 
        aircraft_longitude, 
        aircraft_latitude, 
        aircraft_ellipsoidal_height); 
 
4) Obtain the equivalent Coord3D object for the Geocentric WGS 1984 SRF by using the 

changeCoordinate3D method of the Geocentric WGS 1984 SRF object. 
 
    Coord3D* geocentric_coordinate =  
        Geocentric_WGS84_SRF->createCoordinate3D(0.0, 0.0, 0.0); 
 
    SRM_Coordinate_Valid_Region region =  
        Geocentric_WGS84_SRF->changeCoordinate3DSRF( 
            *geodetic_coordinate, 
            *geocentric_coordinate); 
 
    SRM_Long_Float aircraft_x = 0.0, aircraft_y = 0.0, aircraft_z = 0.0; 
 
    Geocentric_WGS84_SRF->getCoordinate3DValues(*geocentric_coordinate, 
        aircraft_x, 
        aircraft_y, 
        aircraft_z); 

5.3.5 Transform From Geodetic to Range 
Example 5:  Transform the position of an aircraft from the Geodetic WGS 1984 SRF to the 
Range 2 SRF. 
1) Create the SRF object for the Geodetic WGS 1984 SRF (see Section 4.1.1). 
2) Create the SRF object for the Range 2 SRF (see Section 4.2.1). 
3) Create a Coord3D object using the createCoordinate3DSRF method of the Geodetic WGS 

1984 SRF object. 
 
    SRM_Long_Float aircraft_longitude = -120.5 * degreesToRadians, 
        aircraft_latitude = 33.5 * degreesToRadians, 
        aircraft_ellipsoidal_height = 5000.0; // meters 
 
    Coord3D* geodetic_coordinate = Geodetic_WGS84_SRF->createCoordinate3D( 
        aircraft_longitude, 
        aircraft_latitude, 
        aircraft_ellipsoidal_height); 
 
4) Obtain the equivalent Coord3D object for the Range 2 SRF by using the 

changeCoordinate3D method of the Range 2 SRF object. 
 
    Coord3D* range2_coordinate =  
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        Range2_SRF->createCoordinate3D(0.0, 0.0, 0.0); 
 
    SRM_Coordinate_Valid_Region region = Range2_SRF->changeCoordinate3DSRF( 
        *geodetic_coordinate, 
        *range2_coordinate); 
 
    SRM_Long_Float aircraft_range2_x = 0.0, aircraft_range2_y = 0.0, 
        aircraft_range2_z = 0.0; 
 
    Range2_SRF->getCoordinate3DValues(*range2_coordinate, 
        aircraft_range2_x, 
        aircraft_range2_y, 
        aircraft_range2_z); 
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6 Orientation 
This section addresses the transformation of orientation information from one spatial reference 
frame to another. 

6.1 Concept 
Orientation refers to the relationship between the axes of one spatial reference frame, typically 
the coordinate axes of a rigid body, such as an aircraft, and the axes of a second spatial reference 
frame.  The second SRF is typically referred to as the “world” SRF.  Examples include the 
orientation of a tank SRF with respect to a test/training range (world) SRF, and the orientation of 
a test/training range SRF with respect to a geodetic (world) SRF.  Since a rigid body may be 
rotated around the point that represents its position (usually its center of mass), the position alone 
is not enough to completely describe the static state of a rigid body.  Orientation is usually 
symbolized as Ω (upper case omega). 
 
In general, an orientation describes the relationship between the coordinate axes of two spatial 
reference frames.  In this sense, an orientation can be considered to be an operator that allows 
vectors, such as velocity vectors, to be transformed from one spatial reference frame to another.  
Multiple orientations can be composed to form a single compound orientation.  For example, if 
orientation ABΩ  relates the axes of SRF A with the axes of SRF B, and orientation BCΩ  relates 
the axes of SRF B with the axes of SRF C, then orientation ACΩ  can be composed from 
orientation ABΩ  and orientation BCΩ to relate the axes of SRF A with the axes of SRF C. 

6.2 Representations 
An orientation specifies how to transform the coordinate axes of one spatial reference frame to 
match the coordinate axes of another spatial reference frame.  There are many ways to represent 
the orientation of a rigid body.  The SRM supports five representations: 

1. as a rotation angle with respect to a vector (axis-angle), or 
2. as a sequence of three rotations around the principal axes (Euler angles, in z-x-z order:  

(spin, nutation, and precession), or 
3. as a sequence of three rotations around the principal axes (Tait-Bryan angles, in x-y-z 

order:  roll, pitch, and yaw, or 
4. as a 3x3 rotation matrix, or 
5. as a quaternion. 

6.2.1 Axis-Angle Representation 
The axis-angle representation of an orientation consists of a unit vector n (with components n1, 
n2, and n3) and a rotation angle θ .  As shown in Figure 6-1, this represents a rotation of the 
world coordinate axes through the angle θ about the axis defined by n.  This rotation, indicated 
by the red arrows, relates the world coordinate axes (x, y, z), shown in green, with the aircraft 
body axes (x’, y’, z’), shown in blue.  The green-tinted plane in the figure is parallel to the xy-
plane of the world coordinate system, while the blue-tinted plane is the aircraft body x’y’-plane.  
The rotation direction is determined by the right hand rule, i.e., if the right hand grasps the 
vector, with the thumb pointing in the direction of the vector, the fingers curl around the vector 
in the direction of the rotation angle θ . 
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Figure 6-1.  Axis-Angle Representation of Orientation 

 
The data type SRM_Axis_Angle_Params specifies the parameters that allow an Orientation object 
to be instantiated using an axis-angle representation.  It consists of an axis, specified by a 3D 
vector, and a rotation angle about that axis.  The vector is expressed in terms of its three 
components in the world SRF.  The rotation angle is given in radians. 
 
    typedef struct 
    { 
        Vector_3D axis; 
        SRM_Long_Float angle; /* radians */ 
    } SRM_Axis_Angle_Params; 
 
To create an Orientation object using the axis-angle representation: 
 
    // Axis-Angle Representation 
    SRM_Long_Float n1 = 1.0, n2 = 0.0, n3 = 0.0, theta = 0.123; 
    SRM_Axis_Angle_Params my_axis_angle_params; 
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    my_axis_angle_params.axis.array[0] = n1; 
    my_axis_angle_params.axis.array[1] = n2; 
    my_axis_angle_params.axis.array[2] = n3; 
    my_axis_angle_params.angle = theta; 
 
    OrientationAxisAngle my_orientation(my_axis_angle_params); 
 
The method getAxisAngle returns the representation of an Orientation object in axis-angle 
form.  It is invoked as follows. 
 
    my_axis_angle_params = my_orientation.getAxisAngle(); 

6.2.2 Euler Angle Z-X-Z Representation 
Euler angles specify an orientation in terms of three consecutive rotations about the principal 
coordinate system axes.  There are twelve distinct ways to select such a sequence of rotations 
(for right-handed axes).  Each of these orderings is called an Euler angle convention.  
Unfortunately, in the broader community, there is little agreement on how to identify these 
conventions. 
 
The SRM supports the Euler angle convention identified as the z-x-z convention.  This is also 
known as the 3-1-3 convention, or the x-convention.  (The SRM also supports the Tait-Bryan 
angle representation, which is another widely used Euler angle convention.  See 6.2.3.)  As 
shown in Figure 6-2, this involves a sequence of three rotations that relate the world coordinate 
axes, shown in green, with the aircraft body coordinate axes, shown in blue.  The green tinted 
plane in the figure is parallel to the world reference system xy-plane, while the blue-tinted plane 
is the aircraft body x’’’y’’’-plane. 
 
The first rotation, ( )z αΩ , is about the z-axis, through angle α .  This yields the x’ and y’ axes, 
shown in yellow in Figure 6-2, while the z axis, shown in green, remains unchanged. 
 
The second rotation, ( )x βΩ , is about the (original) x-axis, through angle β .  This yields the x’’, 
y’’, and z’’ axes, shown in orange in Figure 6-2. 
 
The third rotation, ( )z γΩ , is again about the (original) z-axis, through angle γ .  This yields the 
x’’’, y’’’, and z’’’ axes, shown in blue in Figure 6-2, which are aligned with the aircraft body 
axes. 
 
The red arrows in Figure 6-2 show how the x, y and z axes, shown in green, are progressively 
transformed by each of these rotations to become first the x’, y’ and z’ axes, shown in yellow, 
then the x’’, y’’ and z’’ axes, shown in orange, and finally the x’’’, y’’’ and z’’’ axes, shown in 
blue. 
 
In some contexts, α  is called the spin angle, β  is called the nutation angle, and γ  is called the 
precession angle. 
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Figure 6-2.  Euler Angle Z-X-Z Representation of Orientation 

 
This data type SRM_Euler_Angles_ZXZ_Params specifies the parameters that allow an 
Orientation object to be instantiated using an Euler angles ZXZ representation.  It consists of 
three rotation angles in radians. 
 
    typedef struct 
    { 
        SRM_Long_Float spin; ; /* radians */ 
        SRM_Long_Float nutation; ; /* radians */ 
        SRM_Long_Float precession; ; /* radians */ 
    } SRM_Euler_Angles_ZXZ_Params; 
 
To create an Orientation object using the Euler angle z-x-z representation: 
 
    // Euler Angle Z-X-Z Representation 
    SRM_Long_Float alpha = 1.0, beta = 0.0, gamma = 0.123; 
    SRM_Euler_Angles_ZXZ_Params my_euler_angle_params; 
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    my_euler_angle_params.spin = alpha; 
    my_euler_angle_params.nutation = beta; 
    my_euler_angle_params.precession = gamma; 
 
    OrientationEulerAnglesZXZ my_orientation(my_euler_angle_params); 
 
The method getEulerAnglesZXZ returns the representation of an Orientation object in Euler 
angles ZXZ form.  It is invoked as follows. 
 
    my_euler_angle_params = my_orientation.getEulerAnglesZXZ(); 

6.2.3 Tait-Bryan Angle Representation 
Another widely used Euler angle convention is the x-y-z convention.5  Euler angles in this 
convention are called Tait-Bryan angles.  They are also sometimes called Cardano angles, or 
nautical angles.  As shown in Figure 6-3, this involves a sequence of three rotations that relate 
the world coordinate axes, shown in green, with the aircraft body coordinate axes, shown in blue.  
The green tinted plane in the figure is parallel to the world reference system xy-plane, while the 
blue-tinted plane is the aircraft body x’’’y’’’-plane. 
 
The first rotation, ( )x ϕΩ , is about the x-axis, through angle ϕ .  This gives the y’, and z’ axes, 
shown in yellow in Figure 6-3, while the x axis remains unchanged. 
 
The second rotation, ( )y θΩ , is about the (original) y-axis, through angle θ .  This gives the x’’, 
y’’, and z’’ axes, shown in orange in Figure 6-3. 
 
The third rotation, ( )z ψΩ , is about the (original) z-axis, through angle ψ .  This gives the x’’’, 
y’’’, and z’’’ axes, shown in blue in Figure 6-3, which are aligned with the aircraft body axes. 
 
The red arrows in Figure 6-3 show how the x, y, and z axes, shown in green, are progressively 
transformed by each of these rotations to become:  first the x’, y’, and z’ axes, shown in yellow; 
then the x’’, y’’, and z’’ axis, shown in orange; and finally the x’’’, y’’’, and z’’’ axis, shown in 
blue. 
 
In some contexts, ϕ  is called the roll (or bank or tilt) angle, θ  is called the pitch angle, and ψ  is 
called the yaw (or heading or azimuth) angle.  Figure 6-3 is consistent with these terms as used 
with an East-North-Up (ENU) axis convention. 
 
This data type SRM_Tait_Bryan_Angles_Params specifies the parameters that allow an 
Orientation object to be instantiated using a Tait-Bryan angles representation.  It consists of 
three rotation angles in radians. 
 

                                                 
5 This convention is used to specify orientation in the DIS standard. 
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Figure 6-3.  Tait-Bryan Angle Representation of Orientation 

 
    typedef struct 
    { 
        SRM_Long_Float roll; /* radians */ 
        SRM_Long_Float pitch; /* radians */ 
        SRM_Long_Float yaw; /* radians */ 
    } SRM_Tait_Bryan_Angles_Params; 
 
To create an Orientation object using the Tait-Bryan angle representation: 
 
    // Tait-Bryan Angle Representation 
    SRM_Long_Float psi = 1.0, theta = 0.0, phi = 0.123; 
    SRM_Tait_Bryan_Angles_Params my_tait_bryan_angle_params; 
 
    my_tait_bryan_angle_params.roll = psi; 
    my_tait_bryan_angle_params.pitch = theta; 
    my_tait_bryan_angle_params.yaw = phi; 
 
    OrientationTaitBryanAngles my_orientation(my_tait_bryan_angle_params); 
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The method getTaitBryanAngles returns the representation of an Orientation object in Tait-
Bryan angles form.  It is invoked as follows. 
 
    my_tait_bryan_angle_params = my_orientation.getTaitBryanAngles(); 

6.2.4 3x3 Rotation Matrix Representation 
The orientation of a rigid body can also be represented in the form of a 3x3 rotation matrix.  To 
represent the Euler angle z-x-z convention discussed in section 6.2.2, the equivalent 3x3 rotation 
matrix representation is: 
 

( ) ( ) ( )
cos cos cos sin sin cos sin cos cos sin sin sin
sin cos cos cos sin cos cos cos sin sin sin cos

sin sin sin cos cos

α β γ

α γ β α γ β α γ α γ β α
α γ β α γ β α γ α γ β α

β γ β γ β

=

− +⎛ ⎞
⎜ ⎟− − −⎜ ⎟
⎜ ⎟−⎝ ⎠

z x zΩ Ω Ω

 

 
This data type SRM_Matrix_3x3 specifies the parameters that allow an Orientation object to be 
instantiated using a 3x3 rotation matrix representation.  It consists of the nine matrix elements. 
 
    typedef struct 
    { 
        SRM_Long_Float array[3][3]; 
    } SRM_Matrix_3x3; 
 
To create an Orientation object using the 3x3 rotation matrix representation: 
 
    // 3x3 Rotation Matrix Representation 
    SRM_Long_Float alpha = 1.0, beta = 0.0, gamma = 0.123; 
    SRM_Long_Float a11, a12, a13, a21, a22, a23, a31, a32, a33; 
 
    a11 = cos(alpha)*cos(gamma) - cos(beta)*sin(alpha)*sin(gamma); 
    a12 = cos(beta)*sin(alpha)*cos(gamma) + cos(alpha*sin(gamma); 
    a13 = sin(beta)*sin(alpha); 
    a21 = -sin(alpha)*cos(gamma) - cos(beta)*cos(alpha)*sin(gamma); 
    a22 = cos(beta)*cos(alpha)*cos(gamma) - sin(alpha)*sin(gamma); 
    a23 = sin(beta)*cos(gamma); 
    a31 = sin(beta)*sin(gamma); 
    a32 = -sin(beta)*cos(gamma); 
    a33 = cos(beta); 
 
    SRM_Matrix_3x3 my_matrix_3x3; 
 
    my_matrix_3x3.array[0][0] = a11; 
    my_matrix_3x3.array[0][1] = a12; 
    my_matrix_3x3.array[0][2] = a13; 
    my_matrix_3x3.array[1][0] = a21; 
    my_matrix_3x3.array[1][1] = a22; 
    my_matrix_3x3.array[1][2] = a23; 
    my_matrix_3x3.array[2][0] = a31; 
    my_matrix_3x3.array[2][1] = a32; 
    my_matrix_3x3.array[2][2] = a33; 
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    OrientationMatrix my_orientation(my_matrix_3x3); 
 
Of course, given the three angles, α , β , and γ , it would be much simpler to create the 
Orientation object using the Euler angles ZXZ representation, as shown in Section 6.2.2.  In 
practice, an Orientation object would only be created using the 3x3 rotation matrix 
representation when the matrix elements are readily available. 
 
For example, to convert between the East-North-Up (ENU) axis convention shown in Figure 6-3 
and the North-East-Down (NED) axis convention used by the aeronautical community, an 
Orientation object could be created from the matrix: 
 

NED ENU→

⎛ ⎞
⎜ ⎟= ⎜ ⎟
⎜ ⎟−⎝ ⎠

0 1 0
1 0 0
0 0 1

Ω  

 
    SRM_Matrix_3x3 ned_enu_matrix_3x3; 
    ned_enu_matrix_3x3.array[0][0] = 0.0; 
    ned_enu_matrix_3x3.array[0][1] = 1.0; 
    ned_enu_matrix_3x3.array[0][2] = 0.0; 
    ned_enu_matrix_3x3.array[1][0] = 1.0; 
    ned_enu_matrix_3x3.array[1][1] = 0.0; 
    ned_enu_matrix_3x3.array[1][2] = 0.0; 
    ned_enu_matrix_3x3.array[2][0] = 0.0; 
    ned_enu_matrix_3x3.array[2][1] = 0.0; 
    ned_enu_matrix_3x3.array[2][2] = -1.0; 
    } 
    OrientationMatrix orientation_ned_enu =  

new OrientationMatrix (ned_enu_matrix_3x3); 
 
 
The method getMatrix3x3 returns the representation of an Orientation object in 3x3 rotation 
matrix form.  It is invoked as follows. 
 
    my_matrix_3x3 = my_orientation.getMatrix3x3(); 

6.2.5 Quaternion Representation 
The word “quaternion” means “a set of four.”  Quaternions are elements of a 4-dimensional 
vector space.  They were first described by the Irish mathematician Sir William Rowan Hamilton 
in 1843 and applied to mechanics in three-dimensional space.  From a purely geometric point of 
view, a quaternion may be regarded as the quotient of two vectors, or, equivalently, as the 
operator that transforms one vector into another.  Due to certain compactness, efficiency, and 
stability advantages over matrices, quaternions have found their way into applications in 
computer graphics, robotics, global navigation, and the orbital mechanics of satellites. 
 
In analogy to complex numbers, quaternion axes , , ,i j k  are defined with the following 
relationships: 2 2 2 1= = = = −i j k ijk .  A quaternion q  is denoted as 0 1 2 3e e e e= + + +q i j k .  
This is known as the Hamilton form.  The first term 0e is called the “real” (or “scalar”) part of q  
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and 1 2 3e e e+ +i j k  is called the “imaginary” (or “vector”) part of q .  The SRM uses a convention 
known as the 4-tuple form, which is simply the 4-tuple of numbers ( )0 1 2 3, , ,e e e e=q . 
 
The data type SRM_Quaternion_Params specifies the parameters that allow an Orientation object 
to be instantiated using a quaternion representation.  It consists of a 4-tuple of numbers, the 
scalar part and the three vector parts.  The parameter values must meet the constraint:  
e e e e+ + + =2 2 2 2

0 1 2 3 1 
 
    typedef struct 
    { 
        SRM_Long_Float e0; /* scalar component */ 
        SRM_Long_Float e1; /* i component */ 
        SRM_Long_Float e2; /* j component */ 
        SRM_Long_Float e3; /* k component */ 
    } SRM_Quaternion_Params; 
 
To create an Orientation object using the quaternion representation: 
 
    // Quaternion Representation 
    SRM_Long_Float e_0 = 0.97098796, e_1 = -0.10497177, e_2 = 0.18746797,  
      e_3 = 0.10497177; 
    SRM_Quaternion_Params my_quaternion_params; 
 
    my_quaternion_params.e0 = e_0; 
    my_quaternion_params.e1 = e_1; 
    my_quaternion_params.e2 = e_2; 
    my_quaternion_params.e3 = e_3; 
 
    OrientationQuaternion my_orientation(my_quaternion_params); 
 
The method getQuaternion returns the representation of an Orientation object in quaternion 
form.  It is invoked as follows. 
 
    my_quaternion_params = my_orientation.getQuaternion(); 

6.2.6 Orientation Representation Access 
Once it has been defined, an Orientation object can return its value in any of the supported 
representations described above.  This is accomplished using a collection of access methods that 
are supported by all Orientation objects. 
 
Given an Orientation object called my_orientation, to obtain its axis-angle representation: 
 
    SRM_Axis_Angle_Params my_axis_angle_params =  
        my_orientation.getAxisAngle(); 
 
To obtain its Euler angle z-x-z representation: 
 
    SRM_Euler_Angles_ZXZ_Params my_euler_angle_params =  
        my_orientation.getEulerAnglesZXZ(); 
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To obtain its Tait-Bryan angle representation: 
 
    SRM_Tait_Bryan_Angles_Params my_tait_bryan_angle_params =  
        my_orientation.getTaitBryanAngles(); 
 
To obtain its 3x3 rotation matrix representation: 
 
    SRM_Matrix_3x3 my_matrix_3x3 = my_orientation.getMatrix3x3(); 
 
And finally, to obtain its quaternion representation: 
 
    SRM_Quaternion_Params my_quaternion_params =  
        my_orientation.getQuaternion(); 

6.3 Transformation procedure 
The general procedure for transforming an orientation from one SRF to another is: 
1) Create the source SRF object, as shown in Section 4. 
2) Create the target SRF object, as shown in Section 4. 
3) Create the source Orientation object that relates the rigid body axes to the source SRF. 
4) Obtain the target Orientation object using the transformOrientation (or 

transformOrientationCommonOrigin) method of the target SRF. 
5) Retrieve the desired representation of the target Orientation object. 
 
The two variations of the transformOrientation method are described below. 

6.3.1 Transform Orientation 
Given an orientation with respect to a local tangent frame (LTFS) associated with a reference 
location in the source SRF, the method transformOrientation computes the orientation with 
respect to the local tangent frame (LTFT) associated with the specified reference location in the 
target SRF.  The output orientation is computed by composing the orientation of LTFS with 
respect to LTFT with the source orientation.  The invoking SRF is the target SRF. 
 
This method takes 3 input parameters: 
1) source reference location (a coordinate in the source SRF) where the origin of LTFS is located. 

(In the C++ and Java implementations, the source SRF is implied by the source reference 
location.) 

2) source orientation of some linear reference frame with respect to LTFS. 
3) target reference location (a coordinate in this SRF, the target SRF) where the origin of LTFT is 

located. 
 
This method computes 1 output parameter: 
1) target orientation with respect to LTFT. 
 
It is invoked as follows: 
 
    target_SRF->transformOrientation ( 

source_ref_coord,  /* input, Coord3D */ 
source_orientation,  /* input, Orientation */ 
target_ref_coord,  /* input, Coord3D */ 
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target_orientation);  /* output, Orientation */ 

6.3.2 Transform Orientation with Common Origin 
Given an orientation with respect to a local tangent frame (LTFS) associated with a reference 
location in the source SRF, the method transformOrientationCommonOrigin computes the 
orientation with respect to the local tangent frame (LTFT) associated with the specified reference 
location in the target SRF.  LTFS and LTFT have a common origin.  The output orientation is 
computed by composing the orientation of LTFS with respect to LTFT with the input orientation.  
The invoking SRF is the target SRF. 
 
This method takes 2 input parameters: 
1) source reference location (a coordinate in the source SRF) where the origin of LTFS is located. 
2) source orientation of some linear reference frame with respect to LTFS. 
 
This method computes 2 output parameters: 
1) coordinate of the common reference location in the target SRF, computed from the source 

reference location coordinate. 
2) target orientation with respect to LTFT. 
 
It is invoked as follows: 
 
    target_SRF->transformOrientationCommonOrigin ( 

source_ref_coord,  /* input, Coord3D */ 
source_orientation,  /* input, Orientation */ 
target_ref_coord,  /* output, Coord3D */ 
target_orientation);  /* output, Orientation */ 

6.4 Examples 
The following examples show how to transform orientations between the various SRFs discussed 
in Section 4. 

6.4.1 Transform Between Range SRFs 
Example 1:  Transform the orientation of an aircraft in axis-angle form with respect to the Range 
1 SRF to the Range 2 SRF, also in axis-angle form.  As shown in Figure 6-4, the axes of the two 
Range SRFs are not parallel.  Therefore, the orientation of the aircraft with respect to the Range 
1 SRF is different from its orientation with respect to the Range 2 SRF. 
 
1) Create the SRF object for the Range 1 SRF (see Section 4.2.1). 
2) Create the SRF object for the Range 2 SRF (see Section 4.2.1). 
3) Create the source Orientation object that relates the aircraft body axes (shown in blue in 

Figure 6-4) to the axes of the Range 1 SRF (shown in green in Figure 6-4) in axis-angle 
form.  This orientation is shown as range1-to-bodyΩ  in Figure 6-4. 

 
    // From Range 1 (Axis-Angle) to Range 2 (Axis-Angle) 
    SRM_Axis_Angle_Params aircraft_range1_axis_angle_params; 
    SRM_Long_Float n1 = -0.43301270, n2 = 0.75, n3 = 0.5; 
 
    aircraft_range1_axis_angle_params.axis.array[0] = n1; 
    aircraft_range1_axis_angle_params.axis.array[1] = n2; 
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    aircraft_range1_axis_angle_params.axis.array[2] = n3; 
    aircraft_range1_axis_angle_params.angle = 30.0 * degreesToRadians; 
 

 
Figure 6-4.  Orientation Transformation from Range 1 to Range 2 

 
    OrientationAxisAngle aircraft_range1_orientation( 
        aircraft_range1_axis_angle_params); 
 
4) Obtain the Range 2 Orientation object using the transformOrientation (or 

transformOrientationCommonOrigin) method of the Range 2 SRF.  This method first 
computes the Orientation object that relates the Range 1 SRF to the Range 2 SRF at the 
specified reference coordinates, shown as range2-to-range1Ω  in Figure 6-4.  This is then composed 
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with the Range 1 Orientation object to create the Range 2 Orientation object.  This 
method requires a reference coordinate for each of the two SRFs.  However, because the 
Range SRFs are both linear, any convenient locations can be chosen.  Suppose the current 
Range 1 coordinate of the aircraft is chosen.  The transformOrientationCommonOrigin 
method can then be used to transform both the position and the orientation of the aircraft to 
the Range 2 SRF at the same time. 

 
    SRM_Long_Float aircraft_range1_x = 5000.0, 
        aircraft_range1_y = 100000.0, 
        aircraft_range1_z = 5000.0; // meters 
 
    Coord3D* aircraft_range1_coord = Range1_SRF->createCoordinate3D( 
        aircraft_range1_x, 
        aircraft_range1_y, 
        aircraft_range1_z); 
 
    Coord3D* aircraft_range2_coord = Range2_SRF->createCoordinate3D( 
        0.0, 0.0, 0.0); 
 
    OrientationTaitBryanAngles aircraft_range2_orientation; 
 
    Range2_SRF->transformOrientationCommonOrigin( 
        *aircraft_range1_coord, 
        aircraft_range1_orientation, 
        *aircraft_range2_coord, 
        aircraft_range2_orientation); 
 
    SRM_Long_Float aircraft_range2_x, aircraft_range2_y, aircraft_range2_z; 
 
    Range2_SRF->getCoordinate3DValues(*aircraft_range2_coord, 
        aircraft_range2_x, 
        aircraft_range2_y, 
        aircraft_range2_z); 
 
5) Retrieve the axis-angle representation of the Range 2 Orientation object. 
 
    SRM_Axis_Angle_Params aircraft_range2_axis_angle_params = 
        aircraft_range2_orientation.getAxisAngle(); 
 
    SRM_Long_Float aircraft_range2_axis_n1, aircraft_range2_axis_n2, 
        aircraft_range2_axis_n3, aircraft_range2_axis_theta; 
 
    aircraft_range2_axis_n1 =  
        aircraft_range2_axis_angle_params.axis.array[0]; 
    aircraft_range2_axis_n2 =  
        aircraft_range2_axis_angle_params.axis.array[1]; 
    aircraft_range2_axis_n3 =  
        aircraft_range2_axis_angle_params.axis.array[2]; 
    aircraft_range2_axis_theta = aircraft_range2_axis_angle_params.angle; 

6.4.2 Transform From Range to Geocentric 
Example 2:  Transform the orientation of a tank with respect to the Range 1 SRF in quaternion 
form to the Geocentric WGS 1984 SRF in Euler angle form. 
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1) Create the SRF object for the Range 1 SRF (see Section 4.2.1). 
2) Create the SRF object for the Geocentric WGS 1984 SRF (see Section 4.1.2). 
3) Create the source Orientation object that relates the tank body axes to the axes of the 

Range 1 SRF in quaternion form. 
 
    // From Range 1 (Quaternion) to Geocentric (Euler Angle) 
    SRM_Quaternion_Params tank_range1_quaternion_params; 
 
    tank_range1_quaternion_params.e0 = 0.96607316; // real 
    tank_range1_quaternion_params.e1 = -0.11195108; // i 
    tank_range1_quaternion_params.e2 = 0.19376985; // j 
    tank_range1_quaternion_params.e3 = 0.12892965; // k 
 
    OrientationQuaternion tank_range1_orientation( 
        tank_range1_quaternion_params); 
 
4) Obtain the Geocentric WGS 1984 Orientation object using the transformOrientation 

(or transformOrientationCommonOrigin) method of the Geocentric WGS 1984 SRF.  This 
method first computes the Orientation object that relates the Range 1 SRF to the 
Geocentric WGS 1984 SRF at the specified reference coordinates.  This is then composed 
with the Range 1 Orientation object to create the Geocentric WGS 1984 Orientation 
object.  This method requires a reference coordinate for each of the two SRFs.  Because the 
Range 1 SRF and the Geocentric WGS 1984 SRF are both linear, any convenient locations 
can be chosen.  Suppose the current Range 1 coordinate of the tank is chosen.  The 
transformOrientationCommonOrigin method can then be used to transform both the 
position and the orientation of the tank to the Geocentric WGS 1984 SRF at the same time. 

 
    SRM_Long_Float tank_range1_x = 2000.0, 
        tank_range1_y = 5000.0, 
        tank_range1_z = 500.0; // meters 
 
    Coord3D* tank_range1_coord = Range1_SRF->createCoordinate3D( 
        tank_range1_x, 
        tank_range1_y, 
        tank_range1_z); 
 
    Coord3D* tank_geocentric_coord =  
        Geocentric_WGS84_SRF->createCoordinate3D(0.0, 0.0, 0.0); 
 
    OrientationEulerAnglesZXZ tank_geocentric_orientation; 
 
    Geocentric_WGS84_SRF->transformOrientationCommonOrigin( 
        *tank_range1_coord, 
        tank_range1_orientation, 
        *tank_geocentric_coord, 
        tank_geocentric_orientation); 
 
    SRM_Long_Float tank_geocentric_x, tank_geocentric_y, tank_geocentric_z; 
 
    Geocentric_WGS84_SRF->getCoordinate3DValues(*tank_geocentric_coord, 
        tank_geocentric_x, 
        tank_geocentric_y, 
        tank_geocentric_z); 
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5) Retrieve the Euler angle representation of the Geocentric WGS 1984 Orientation object. 
 
    SRM_Euler_Angles_ZXZ_Params tank_euler_angle_params = 
        tank_geocentric_orientation.getEulerAnglesZXZ(); 
 
    SRM_Long_Float tank_alpha = tank_euler_angle_params.spin; 
    SRM_Long_Float tank_beta = tank_euler_angle_params.nutation; 
    SRM_Long_Float tank_gamma = tank_euler_angle_params.precession; 

6.4.3 Transform From Range to Geodetic 
Example 3:  Transform the orientation of a tank with respect to the Range 1 SRF in 3x3 matrix 
form to the Geodetic WGS 1984 SRF in Tait-Bryan angle form. 
 
1) Create the SRF object for the Range 1 SRF (see Section 4.2.1). 
2) Create the SRF object for the Geodetic WGS 1984 SRF (see Section 4.1.1). 
3) Create the source Orientation object that relates the tank body axes to the axes of the 

Range 1 SRF in 3x3 matrix form. 
 
    // From Range 1 (3x3 Matrix) to Geodetic (Tait-Bryan) 
    SRM_Matrix_3x3 tank_range1_matrix = { 
 0. 0.89114923, -0.29350295, 0.34598999, 
 0.20648575, 0.94138810, 0.26674346, 
     -0.40400085, -0.16626623, 0.89952146 }; 
 
    OrientationMatrix tank_range1_orientation(tank_range1_matrix); 
 
4) Obtain the Geodetic WGS 1984 Orientation object, using the transformOrientation (or 

transformOrientationCommonOrigin) method of the Geodetic WGS 1984 SRF.  This 
method first computes the Orientation object that relates the Range 1 SRF to the Geodetic 
WGS 1984 SRF at the specified reference coordinates.  This is then composed with the 
Range 1 Orientation object to create the Geodetic WGS 1984 Orientation object.  This 
requires a reference coordinate for each of the two SRFs.  In this case, because the Range 1 
SRF is a linear SRF, any convenient location can be chosen for the Range 1 reference 
coordinate.  However, because the Geodetic WGS 1984 SRF is a curvilinear SRF, an 
appropriate and relevant location should be chosen as the geodetic reference coordinate.  
Suppose the current Range 1 coordinate of the tank is chosen as the reference coordinate for 
the Range 1 SRF, and the Geodetic WGS 1984 coordinate of the tank is chosen as the 
reference coordinate for the Geodetic WGS 1984 SRF.  This defines a Local Tangent Space 
Euclidean SRF with its origin located at the current position of the tank.  The 
transformOrientationCommonOrigin method can then be used to transform both the 
position and the orientation of the tank to the Geodetic WGS 1984 SRF at the same time. 

 
    SRM_Long_Float tank_range1_x = 2000.0, 
        tank_range1_y = 5000.0, 
        tank_range1_z = 500.0; // meters 
 
    Coord3D* tank_range1_coord = Range1_SRF->createCoordinate3D( 
        tank_range1_x, 
        tank_range1_y, 
        tank_range1_z); 
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    Coord3D* tank_geodetic_coord = Geodetic_WGS84_SRF->createCoordinate3D( 
        0.0, 0.0, 0.0); 
 
    OrientationTaitBryanAngles tank_geodetic_orientation; 
 
    Geodetic_WGS84_SRF->transformOrientationCommonOrigin( 
        *tank_range1_coord, 
        tank_range1_orientation, 
        *tank_geodetic_coord, 
        tank_geodetic_orientation); 
 
    SRM_Long_Float tank_geodetic_longitude, 
        tank_geodetic_latitude, 
        tank_geodetic_ellipsoid_height; 
 
    Geodetic_WGS84_SRF->getCoordinate3DValues(*tank_geodetic_coord, 
        tank_geodetic_longitude, 
        tank_geodetic_latitude, 
        tank_geodetic_ellipsoid_height); 
 
5) Retrieve the Tait-Bryan angle representation of the Geodetic WGS 1984 Orientation 

object. 
 
    SRM_Tait_Bryan_Angles_Params tank_tait_bryan_angle_params = 
        tank_geodetic_orientation.getTaitBryanAngles(); 
 
    SRM_Long_Float tank_psi = tank_tait_bryan_angle_params.roll; 
    SRM_Long_Float tank_theta = tank_tait_bryan_angle_params.pitch; 
    SRM_Long_Float tank_phi = tank_tait_bryan_angle_params.yaw; 

6.4.4 Transform From Geodetic to Geocentric 
Example 4:  Transform the orientation of an aircraft with respect to the Geodetic WGS 1984 SRF 
in Tait-Bryan angle form to the Geocentric WGS 1984 SRF in Euler angle form. 
 
1) Create the SRF object for the Geodetic WGS 1984 SRF (see Section 4.1.1). 
2) Create the SRF object for the Geocentric WGS 1984 SRF (see Section 4.1.2). 
3) Create the Geodetic WGS 1984 Orientation object that relates the aircraft body axes to the 

axes of the Geodetic WGS 1984 SRF in Tait-Bryan angle form. 
 
    // From Geodetic (Tait-Bryan) to Geocentric (Euler Angle) 
    SRM_Tait_Bryan_Angles_Params aircraft_geodetic_tait_bryan_params; 
 
    aircraft_geodetic_tait_bryan_params.roll = 30.0 * degreesToRadians; 
    aircraft_geodetic_tait_bryan_params.pitch = 30.0 * degreesToRadians; 
    aircraft_geodetic_tait_bryan_params.yaw = 120.0 * degreesToRadians; 
 
    OrientationTaitBryanAngles aircraft_geodetic_orientation( 
        aircraft_geodetic_tait_bryan_params); 
 
4) Obtain the Geocentric WGS 1984 Orientation object, using the transformOrientation 

method of the Geocentric WGS 1984 SRF.  This method first computes the Orientation 
object that relates the Geodetic WGS 1984 SRF to the Geocentric WGS 1984 SRF at the 
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specified reference coordinates.  This is then composed with the Geodetic WGS 1984 
Orientation object to create the Geocentric WGS 1984 Orientation object.  This requires 
a reference coordinate for each of the two SRFs.  In this case, because the Geodetic WGS 
1984 SRF is a curvilinear SRF, an appropriate and relevant location should be chosen as the 
geodetic reference coordinate.  Suppose the Geodetic WGS 1984 coordinate of the aircraft is 
chosen as the geodetic reference coordinate.  This defines a Local Tangent Space Euclidean 
SRF with its origin located at the current position of the aircraft.  However, because the 
Geocentric WGS 1984 SRF is a linear SRF, any convenient location can be chosen as the 
geocentric reference coordinate.  Suppose the geocentric origin is chosen. 

 
    SRM_Long_Float aircraft_longitude = -120.5 * degreesToRadians, 
        aircraft_latitude = 33.5 * degreesToRadians, 
        aircraft_ellipsoidal_height = 5000; // meters 
 
    Coord3D* geodetic_ref_coord = Geodetic_WGS84_SRF->createCoordinate3D( 
        aircraft_longitude, 
        aircraft_latitude, 
        aircraft_ellipsoidal_height); 
 
    Coord3D* geocentric_ref_coord = Geocentric_WGS84_SRF->createCoordinate3D( 
        0.0, 0.0, 0.0); 
 
    OrientationEulerAnglesZXZ aircraft_geocentric_orientation; 
 
    Geocentric_WGS84_SRF->transformOrientation( 
        *geodetic_ref_coord, 
        aircraft_geodetic_orientation, 
        *geocentric_ref_coord, 
        aircraft_geocentric_orientation); 
 
5) Retrieve the Euler angle representation of the Geocentric WGS 1984 Orientation object. 
 
     SRM_Euler_Angles_ZXZ_Params aircraft_euler_angle_params = 
        aircraft_geocentric_orientation.getEulerAnglesZXZ(); 
 
    SRM_Long_Float aircraft_alpha = aircraft_euler_angle_params.spin; 
    SRM_Long_Float aircraft_beta = aircraft_euler_angle_params.nutation; 
    SRM_Long_Float aircraft_gamma = aircraft_euler_angle_params.precession; 

6.4.5 Transform From Geodetic to Range 
Example 5:  Transform the orientation of an aircraft with respect to the Geodetic WGS 1984 SRF 
in Tait-Bryan angle form to the Range 2 SRF in quaternion form. 
 
1) Create the SRF object for the Geodetic WGS 1984 SRF (see Section 4.1.1). 
2) Create the SRF object for the Range 2 SRF (see Section 4.2.1). 
3) Create the Geodetic WGS 1984 Orientation object that relates the aircraft body axes to the 

axes of the Geodetic WGS 1984 SRF in Tait-Bryan angle form. 
 
    // From Geodetic (Tait-Bryan) to Range 2 (Quaternion) 
    SRM_Tait_Bryan_Angles_Params aircraft_geodetic_tait_bryan_params; 
 
    aircraft_geodetic_tait_bryan_params.roll = 30.0 * degreesToRadians; 
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    aircraft_geodetic_tait_bryan_params.pitch = 30.0 * degreesToRadians; 
    aircraft_geodetic_tait_bryan_params.yaw = 120.0 * degreesToRadians; 
 
    OrientationTaitBryanAngles aircraft_geodetic_orientation( 
        aircraft_geodetic_tait_bryan_params); 
 
4) Obtain the Range 2 Orientation object, using the TransformOrientation method of the 

Range 2 SRF.  This method first computes the Orientation object that relates the Geodetic 
WGS 1984 SRF to the Range 2 SRF at the specified reference coordinates.  This is then 
composed with the Geodetic WGS 1984 Orientation object to create the Range 2 
Orientation object.  This requires a reference coordinate for each of the two SRFs.  In this 
case, because the Geodetic WGS 1984 SRF is a curvilinear SRF, an appropriate and relevant 
location should be chosen as the geodetic reference coordinate.  Suppose the Geodetic WGS 
1984 coordinate of the aircraft is chosen.  This defines a Local Tangent Space Euclidean SRF 
with its origin located at the current position of the aircraft.  However, because the Range 2 
SRF is a linear SRF, any convenient location can be chosen as the Range 2 reference 
coordinate.  Suppose the Range 2 origin is chosen. 

 
    SRM_Long_Float aircraft_longitude = -120.5 * degreesToRadians, 
        aircraft_latitude = 33.5 * degreesToRadians, 
        aircraft_ellipsoidal_height = 5000; // meters 
 
    Coord3D* geodetic_ref_coord = Geodetic_WGS84_SRF->createCoordinate3D( 
        aircraft_longitude, 
        aircraft_latitude, 
        aircraft_ellipsoidal_height); 
 
    Coord3D* range2_ref_coord = Range2_SRF->createCoordinate3D( 
        0.0, 0.0, 0.0); 
 
    OrientationQuaternion aircraft_range2_orientation; 
 
    Range2_SRF->transformOrientation( 
        *geodetic_ref_coord, 
        aircraft_geodetic_orientation, 
        *range2_ref_coord, 
        aircraft_range2_orientation); 
 
5) Retrieve the quaternion representation of the Range 2 Orientation object. 
 
    SRM_Quaternion_Params aircraft_quaternion_params = 
        aircraft_range2_orientation.getQuaternion(); 
 
    SRM_Long_Float aircraft_e0 = aircraft_quaternion_params.e0; 
    SRM_Long_Float aircraft_e1 = aircraft_quaternion_params.e1; 
    SRM_Long_Float aircraft_e2 = aircraft_quaternion_params.e2; 
    SRM_Long_Float aircraft_e3 = aircraft_quaternion_params.e3; 
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7 Vector Quantities 
This section addresses the transformation of vector quantities from one spatial reference frame to 
another, including linear velocity, angular velocity, linear acceleration, and angular acceleration. 

7.1 Concepts 
The concepts of linear velocity, angular velocity, linear acceleration, and angular acceleration are 
briefly reviewed in this subsection. 
 

 
Figure 7-1.  Linear Velocity 

7.1.1 Linear Velocity 
Linear velocity is the time rate of change of displacement (i.e., change of position), or the 
derivative of displacement with respect to time, of a particle or rigid body.  Linear velocity is a 
vector, which consists of both a direction and a magnitude, i.e., speed.  Linear velocity is 
commonly symbolized as v.  Figure 7-1 shows the current position of an aircraft, its linear 
velocity vector (shown in red), and its projected position after a time interval (shown as a 
“ghost” of the aircraft).  The instantaneous linear velocity, which specifies the linear velocity of 
the particle or rigid body at a specific point in time, is the limit as the length of the interval 
approaches zero.  The units for linear velocity are typically meters per second (m/sec). 
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Figure 7-2.  Angular Velocity 

7.1.2 Angular Velocity 
Angular velocity is the time rate of rotation, or the derivative of rotation with respect to time, of 
a particle or a rigid body about an axis.  Angular velocity is a vector, with magnitude equal to the 
angular speed at which the body is rotating, and which points in the direction of the axis of 
rotation.  The direction of rotation about the axis is specified by the right hand rule.  Angular 
velocity is commonly symbolized as ω (lower case omega).  Figure 7-2 shows the angular 
velocity of an aircraft as it rotates about an arbitrary axis, shown in red, over a time interval.  The 
future position of the aircraft is shown in the form of a “ghost” aircraft.  The orientation Ω  
specifies the relationship between the current and future aircraft body axes.  The tangential 
velocity vector v shows the linear velocity of a point on the nose of the aircraft, which is located 
a distance r from the axis of rotation.  The orange arc shows the actual path of this point, within a 
plane perpendicular to the axis of rotation, shown in blue, as the aircraft rotates.  The units for 
angular velocity are typically radians per second (rad/sec). 
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Figure 7-3.  Linear Acceleration 

7.1.3 Linear Acceleration 
Linear acceleration is the time rate of change of linear velocity, or the derivative of linear 
velocity with respect to time, of a particle or rigid body.  Linear acceleration is a vector.  It is 
commonly symbolized as a.  Figure 7-3 shows the change in the linear velocity of an aircraft, 
over the course of a brief time interval, Δt.  The vector v0 is the current linear velocity vector.  
The vector a is the current linear acceleration vector.  Its components are also shown, in green.  
The future position of the aircraft is shown as a “ghost” aircraft.  The vector vΔt is an 
approximation of its future linear velocity vector, given by vΔt ≅  v0 + (Δt * a).  The 
instantaneous linear acceleration, which specifies the linear acceleration at a specific point in 
time, is the limit as the length of the time interval approaches zero.  The units for linear 
acceleration are typically meters per second squared (m/sec2). 
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Figure 7-4.  Angular Acceleration 

7.1.4 Angular Acceleration 
Angular acceleration is the time rate of change of angular velocity, or the derivative of angular 
velocity with respect to time, of a particle or rigid body.  Angular acceleration is a vector.  It is 
commonly symbolized as α (lower case alpha)6.  Figure 7-4 shows the change in the angular 
velocity of an aircraft, as it rotates about an arbitrary axis, over the course of a time interval.  The 
future position of the aircraft is shown in the form of a “ghost” aircraft.  The orientation Ω  
specifies the relationship between the current and future aircraft body axes.  The tangential (at) 
and normal (an) components of the angular acceleration show how the velocity of a point on the 
nose of the aircraft, located a distance r from the axis of rotation, changes over time.  The orange 
arc shows the actual path of this point, within a plane perpendicular to the axis of rotation, shown 
in blue, as the aircraft rotates.  The units for angular acceleration are typically radians per second 
squared (rad/sec2). 
 
                                                 
6 The angular acceleration vector α should not be confused with the azimuth angle α used in section 4.2.1. 
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7.2 Representation 
Several quantities associated with a particle or rigid body, including linear velocity, angular 
velocity, linear acceleration, and angular acceleration, can be represented as 3D vectors.  In the 
SRM API, such 3D vectors are instantiated using the data type Vector_3D_Params: 
 
    typedef struct 
    { 
        SRM_Long_Float array[3]; 
    } SRM_Vector_3D; 
 
The three components of this vector represent the three components of the linear velocity, 
angular velocity, linear acceleration, or angular acceleration along each of the coordinate axes of 
the appropriate SRF, in order. 
 
The vector transformation operations in the SRM do not require the units of a given vector 
quantity, since the units are not affected by any vector transformation operations. 

7.3 Transformation Procedure 
The general procedure for transforming one or more vector quantities from one SRF to another 
is: 
1) Create the source SRF object, as shown in Section 4. 
2) Create the target SRF object, as shown in Section 4. 
3) Transform the vector(s) from the source SRF to the target SRF using the transformVector 

method (or one of its alternative forms) of the target SRF. 
 
The four variations of the transformVector method are described below. 

7.3.1 Transform Vector  
Given a vector in the local tangent frame (LTFS) associated with a reference location in the 
source SRF, the method transformVector computes the vector in the local tangent frame 
(LTFT) associated with the specified reference location in the target SRF.  The output vector is 
computed by applying the orientation of LTFS with respect to LTFT to the source vector.  The 
invoking SRF is the target SRF. 
 
This method takes 3 input parameters: 
1) source reference location (a coordinate in the source SRF) where the origin of LTFS is located. 

(In the C++ and Java implementations, the source SRF is implied by the source reference 
location.) 

2) source vector in LTFS. 
3) target reference location (a coordinate in this SRF, the target SRF) where the origin of LTFT is 

located. 
 
This method computes 1 output parameter: 
1) target vector in LTFT. 
 
It is invoked as follows: 
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    target_SRF->transformVector ( 
source_ref_coord,  /* input, Coord3D */ 
source_vector,  /* input, Vector_3D */ 
target_ref_coord,  /* input, Coord3D */ 
target_vector);  /* output, Vector_3D */ 

7.3.2 Transform Vector with Common Origin 
Given a vector in the local tangent frame (LTFS) associated with a reference location in the 
source SRF, the method transformVectorCommonOrigin computes the vector in the local 
tangent frame (LTFT) associated with the specified reference location in the target SRF.  LTFS 
and LTFT have a common origin.  The output vector is computed by applying the orientation of 
LTFS with respect to LTFT to the source vector.  The invoking SRF is the target SRF. 
 
This method takes 2 input parameters: 
1) source reference location (a coordinate in the source SRF) where the origin of LTFS is located. 

(In the C++ and Java implementations, the source SRF is implied by the source reference 
location.) 

2) source vector in LTFS. 
 
This method computes 2 output parameters: 
1) coordinate of the common reference location in the target SRF, computed from the source 

reference location coordinate. 
2) target vector in LTFT. 
 
It is invoked as follows: 
 
    target_SRF->transformVectorCommonOrigin ( 

source_ref_coord,  /* input, Coord3D */ 
source_vector,  /* input, Vector_3D */ 
target_ref_coord,  /* output, Coord3D */ 
target_vector);  /* output, Vector_3D */ 

7.3.3 Transform Vector in Body Frame 
Given a vector in a body frame (or in general any linear reference frame, denoted by L), and 
given the orientation of this body frame with respect to a local tangent frame (LTFS), the method 
transformVectorInBodyFrame computes the representation of the vector with respect to 
another local tangent frame (LTFT), where LTFS is the local tangent frame associated with the 
source SRF at the specified source reference location, and LTFT is the local tangent frame 
associated with the target SRF at the specified target reference location.  The output vector is 
computed by applying the composed orientation, from the orientation of LTFS with respect to 
LTFT with the source orientation, to the source vector.  This method is equivalent to applying the 
orientation result from the transformOrientation method to the source vector.  The invoking 
SRF is the target SRF. 
 
This method takes 4 input parameters:  
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1) source reference location (a coordinate in the source SRF) where the origin of LTFS is located. 
(In the C++ and Java implementations, the source SRF is implied by the source reference 
location.) 

2) source orientation of some linear reference frame L with respect to LTFS. 
3) source vector in the linear reference frame L. 
4) target reference location (a coordinate in this SRF, the target SRF) where the origin of the 

target local tangent frame (LTFT) is located. 
 
This method computes 1 output parameter: 
1) target vector in LTFT. 
 
It is invoked as follows: 
 
    target_SRF->transformVectorInBodyFrame ( 

source_ref_coord,  /* input, Coord3D */ 
source_orientation,  /* input, Orientation */ 
source_vector,  /* input, Vector_3D */ 
target_ref_coord,  /* input, Coord3D */ 
target_vector);  /* output, Vector_3D */ 

7.3.4 Transform Vector in Body Frame with Common Origin 
Given a vector in a body frame (or in general any linear reference frame, denoted by L), and 
given the orientation of this body frame with respect to a local tangent frame (LTFS), the method 
transformVectorInBodyFrameCommonOrigin computes the representation of the vector with 
respect to another local tangent frame (LTFT), where LTFS is the local tangent frame associated 
with the source SRF at the specified source reference location, and LTFT is the local tangent 
frame associated with the target SRF at the specified target reference location.  LTFS and LTFT 
have a common origin.  The output vector is computed by applying the composed orientation, 
from the orientation of LTFS with respect to LTFT with the source orientation, to the source 
vector.  This method is equivalent to applying the orientation result from the 
transformOrientationCommonOrigin method to the source vector.  The invoking SRF is the 
target SRF. 
 
This method takes 3 input parameters: 
1) source reference location (a coordinate in the source SRF) where the origin of LTFS is located. 

(In the C++ and Java implementations, the source SRF is implied by the source reference 
location.) 

2) source orientation of some linear reference frame L with respect to LTFS. 
3) source vector in the linear reference frame L. 
 
This method computes 2 output parameters: 
1) coordinate of the common reference location in the target SRF, computed from the source 

reference location coordinate. 
2) target vector in LTFT. 
 
It is invoked as follows: 
 
    target_SRF->transformVectorInBodyFrameCommonOrigin ( 
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source_ref_coord,  /* input, Coord3D */ 
source_orientation,  /* input, Orientation */ 
source_vector,  /* input, Vector_3D */ 
target_ref_coord,  /* output, Coord3D */ 
target_vector);  /* output, Vector_3D */ 

7.4 Examples 
The following examples show how to transform vector quantities between the various SRFs 
defined in Section 4. 

 
Figure 7-5.  Vector Transformation from Range 1 to Range 2 

7.4.1 Transform Between Range SRFs 
Example 1:  Given the linear velocity v, with components (vx, vy, vz), angular velocity ω, with 
components (ωx, ωy, ωz), linear acceleration a (with components, (ax, ay, az), and angular 
acceleration α, with components (αx, αy, αz) of an aircraft, expressed with respect to the Range 1 
SRF, transform these four vector quantities to the Range 2 SRF. 
 
As shown in Figure 7-5, the corresponding axes of the two Range SRFs, shown in green and 
yellow, respectively, are not parallel to one another.  Thus, the component values of a vector 
quantity v associated with the aircraft, representing, for example, its velocity with respect to the 
Range 1 SRF, are different from the corresponding component values of the same vector with 
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respect to the Range 2 SRF.  The figure makes this clear by translating the vector v, shown in 
blue, from the aircraft center of mass to the origins of each of the two Range SRFs, and showing 
the components of the vector, in green, with respect to each set of axes. 
 
1) Create the SRF object for the Range 1 SRF (see Section 4.2.1). 
2) Create the SRF object for the Range 2 SRF (see Section 4.2.1). 
3) Transform the vectors from the Range 1 SRF to the Range 2 SRF using the 

transformVector method of the Range 2 SRF object.  This requires a reference coordinate 
for each of the two SRFs.  Because the Range SRFs are both linear, any convenient locations 
can be chosen as the reference coordinates.  Suppose the origins of the Range 1 and Range 2 
SRFs, respectively, are chosen. 

 
    // From Range 1 to Range 2 
    Coord3D* range1_ref_coord = Range1_SRF->createCoordinate3D( 
        0.0, 0.0, 0.0); 
 
    Coord3D* range2_ref_coord = Range2_SRF->createCoordinate3D( 
        0.0, 0.0, 0.0); 
 
    // Aircraft linear velocity vector with respect to Range 1 
    // (200 m/sec ahead): 
    SRM_Vector_3D aircraft_range1_velocity; 
 
    aircraft_range1_velocity.array[0] = 200.0 * -0.4330127; // m/sec 
    aircraft_range1_velocity.array[1] = 200.0 * 0.75; // m/sec 
    aircraft_range1_velocity.array[2] = 200.0 * 0.5; // m/sec 
 
    SRM_Vector_3D aircraft_range2_velocity; 
 
    Range2_SRF->transformVector( 
        *range1_ref_coord, 
        aircraft_range1_velocity, 
        *range2_ref_coord, 
        aircraft_range2_velocity); 
 
    // Aircraft angular velocity vector with respect to Range 1 
    // (1 degree/sec clockwise roll): 
    SRM_Vector_3D aircraft_range1_angular_velocity; 
 
    aircraft_range1_angular_velocity.array[0] = 
        1.0 * degreesToRadians * -0.4330127; // radians/sec 
    aircraft_range1_angular_velocity.array[1] = 
        1.0 * degreesToRadians * 0.75; // radians/sec 
    aircraft_range1_angular_velocity.array[2] = 
        1.0 * degreesToRadians * 0.5; // radians/sec 
 
    SRM_Vector_3D aircraft_range2_angular_velocity; 
 
    Range2_SRF->transformVector( 
        *range1_ref_coord, 
        aircraft_range1_angular_velocity, 
        *range2_ref_coord, 
        aircraft_range2_angular_velocity); 
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    // Aircraft linear acceleration vector with respect to Range 1 
    // (10 m/sec**2 ahead): 
    SRM_Vector_3D aircraft_range1_acceleration; 
 
    aircraft_range1_acceleration.array[0] = 10.0 * -0.4330127; // m/sec^2 
    aircraft_range1_acceleration.array[1] = 10.0 * 0.75; // m/sec^2 
    aircraft_range1_acceleration.array[2] = 10.0 * 0.5; // m/sec^2 
 
    SRM_Vector_3D aircraft_range2_acceleration; 
     
    Range2_SRF->transformVector( 
        *range1_ref_coord, 
        aircraft_range1_acceleration, 
        *range2_ref_coord, 
        aircraft_range2_acceleration); 
 
    // Aircraft angular acceleration vector with respect to Range 1 
    // (1 degree/sec**2 clockwise roll): 
    SRM_Vector_3D aircraft_range1_angular_acceleration; 
 
    aircraft_range1_angular_acceleration.array[0] = 
        1.0 * degreesToRadians * -0.4330127; // radians/sec^2 
    aircraft_range1_angular_acceleration.array[1] = 
        1.0 * degreesToRadians * 0.75; // radians/sec^2 
    aircraft_range1_angular_acceleration.array[2] = 
        1.0 * degreesToRadians * 0.5; // radians/sec^2 
 
    SRM_Vector_3D aircraft_range2_angular_acceleration; 
 
    Range2_SRF->transformVector( 
        *range1_ref_coord, 
        aircraft_range1_angular_acceleration, 
        *range2_ref_coord, 
        aircraft_range2_angular_acceleration); 

7.4.2 Transform From Range to Geocentric 
Example 2:  Transform the linear velocity, linear acceleration, angular velocity, and angular 
acceleration vectors of a tank expressed with respect to the Range 1 SRF to the Geocentric WGS 
1984 SRF. 
 
1) Create the SRF object for the Range 1 SRF (see Section 4.2.1). 
2) Create the SRF object for the Geocentric WGS 1984 SRF (see Section 4.1.2). 
3) Transform the vectors from the Range 1 SRF to the Geocentric WGS 1984 SRF using the 

transformVector method of the Geocentric WGS 1984 SRF object.  This requires a 
reference coordinate for each of the two SRFs.  Because the Range 1 SRF and the Geocentric 
WGS 1984 SRF are both linear, any convenient locations can be chosen as the reference 
coordinates.  Suppose the origin of the Range 1 SRF, and the origin of the Geocentric WGS 
1984 SRF, are chosen. 

 
    // From Range 1 to Geocentric 
    Coord3D* range1_ref_coord = Range1_SRF->createCoordinate3D( 
        0.0, 0.0, 0.0); 
 
    Coord3D* geocentric_ref_coord = Geocentric_WGS84_SRF->createCoordinate3D( 
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        0.0, 0.0, 0.0); 
 
    // Tank linear velocity vector with respect to Range 1 
    // (20 m/sec ahead): 
    SRM_Vector_3D tank_range1_velocity; 
 
    tank_range1_velocity.array[0] = 20.0 * 0.25; // m/sec 
    tank_range1_velocity.array[1] = 20.0 * 0.9330127; // m/sec 
    tank_range1_velocity.array[2] = 20.0 * 0.25881905; // m/sec 
 
    SRM_Vector_3D tank_geocentric_velocity; 
 
    Geocentric_WGS84_SRF->transformVector( 
        *range1_ref_coord, 
        tank_range1_velocity, 
        *geocentric_ref_coord, 
        tank_geocentric_velocity); 
 
    // Tank angular velocity vector with respect to Range 1 
    // (1 degree/sec right turn): 
    SRM_Vector_3D tank_range1_angular_velocity; 
 
    tank_range1_angular_velocity.array[0] = 
        1.0 * degreesToRadians * 0.25; // radians/sec 
    tank_range1_angular_velocity.array[1] = 
        1.0 * degreesToRadians * 0.9330127; // radians/sec 
    tank_range1_angular_velocity.array[2] = 
        1.0 * degreesToRadians * 0.25881905; // radians/sec 
 
    SRM_Vector_3D tank_geocentric_angular_velocity; 
 
    Geocentric_WGS84_SRF->transformVector( 
        *range1_ref_coord, 
        tank_range1_angular_velocity, 
        *geocentric_ref_coord, 
        tank_geocentric_angular_velocity); 
 
    // Tank linear acceleration vector with respect to Range 1 
    // (-0.2 m/sec**2 ahead): 
    SRM_Vector_3D tank_range1_acceleration; 
 
    tank_range1_acceleration.array[0] = -0.2 * 0.25; // m/sec^2 
    tank_range1_acceleration.array[1] = -0.2 * 0.9330127; // m/sec^2 
    tank_range1_acceleration.array[2] = -0.2 * 0.25881905; // m/sec^2 
 
    SRM_Vector_3D tank_geocentric_acceleration; 
 
    Geocentric_WGS84_SRF->transformVector( 
        *range1_ref_coord, 
        tank_range1_acceleration, 
        *geocentric_ref_coord, 
        tank_geocentric_acceleration); 
 
    // Tank angular acceleration vector with respect to Range 1 
    // (-0.1 degree/sec right turn): 
    SRM_Vector_3D tank_range1_angular_acceleration; 
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    tank_range1_angular_acceleration.array[0] = 
        -0.1 * degreesToRadians * 0.25; // radians/sec^2 
    tank_range1_angular_acceleration.array[1] = 
        -0.1 * degreesToRadians * 0.9330127; // radians/sec^2 
    tank_range1_angular_acceleration.array[2] = 
        -0.1 * degreesToRadians * 0.25881905; // radians/sec^2 
 
    SRM_Vector_3D tank_geocentric_angular_acceleration; 
 
    Geocentric_WGS84_SRF->transformVector( 
        *range1_ref_coord, 
        tank_range1_angular_acceleration, 
        *geocentric_ref_coord, 
        tank_geocentric_angular_acceleration); 

7.4.3 Transform From Range to Geodetic 
Example 3:  Transform the linear velocity, linear acceleration, angular velocity, and angular 
acceleration vectors of a tank expressed with respect to the Range 1 SRF to the Geodetic WGS 
1984 SRF. 
 
1) Create the SRF object for the Range 1 SRF (see Section 4.2.1). 
2) Create the SRF object for the Geodetic WGS 1984 SRF (see Section 4.1.1). 
3) Transform the vectors from the Range 1 SRF to the Geodetic WGS 1984 SRF using the 

transformVector method of the Geodetic WGS 1984 SRF object.  This requires a 
reference coordinate for each of the two SRFs.  In this case, because the Range 1 SRF is a 
linear SRF, any convenient location can be chosen as the Range 1 reference coordinate.  
However, because the Geodetic WGS 1984 SRF is a curvilinear SRF, an appropriate and 
relevant location should be chosen as the geodetic reference coordinate.  Suppose the origin 
of the Range 1 SRF is chosen as the reference coordinate for the Range 1 SRF, and is then 
converted to the Geodetic WGS 1984 SRF. 

 
    // From Range 1 to Geodetic 
    Coord3D* range1_ref_coord = Range1_SRF->createCoordinate3D( 
        0.0, 0.0, 0.0); 
 
    Coord3D* geodetic_ref_coord = Geodetic_WGS84_SRF->createCoordinate3D( 
        0.0, 0.0, 0.0); 
 
    SRM_Coordinate_Valid_Region region = Geodetic_WGS84_SRF-
>changeCoordinate3DSRF( 
        *range1_ref_coord, 
        *geodetic_ref_coord); 
 
    // Tank linear velocity vector with respect to Range 1 
    // (15 m/sec ahead): 
    SRM_Vector_3D tank_range1_velocity; 
 
    tank_range1_velocity.array[0] = 15.0 * 0.25; // m/sec 
    tank_range1_velocity.array[1] = 15.0 * 0.9330127; // m/sec 
    tank_range1_velocity.array[2] = 15.0 * 0.25881905; // m/sec 
 
    SRM_Vector_3D tank_geodetic_velocity; 
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    Geodetic_WGS84_SRF->transformVector( 
        *range1_ref_coord, 
        tank_range1_velocity, 
        *geodetic_ref_coord, 
        tank_geodetic_velocity); 
 
    // Tank angular velocity vector with respect to Range 1 
    // (1 degree/sec left turn): 
    SRM_Vector_3D tank_range1_angular_velocity; 
 
    tank_range1_angular_velocity.array[0] = 
        -1.0 * degreesToRadians * 0.25; // radians/sec 
    tank_range1_angular_velocity.array[1] = 
        -1.0 * degreesToRadians * 0.9330127; // radians/sec 
    tank_range1_angular_velocity.array[2] = 
        -1.0 * degreesToRadians * 0.25881905; // radians/sec 
 
    SRM_Vector_3D tank_geodetic_angular_velocity; 
 
    Geodetic_WGS84_SRF->transformVector( 
        *range1_ref_coord, 
        tank_range1_angular_velocity, 
        *geodetic_ref_coord, 
        tank_geodetic_angular_velocity); 
 
    // Tank linear acceleration vector with respect to Range 1 
    // (0.1 m/sec**2 ahead): 
    SRM_Vector_3D tank_range1_acceleration; 
 
    tank_range1_acceleration.array[0] = 0.1 * 0.25; // m/sec^2 
    tank_range1_acceleration.array[1] = 0.1 * 0.9330127; // m/sec^2 
    tank_range1_acceleration.array[2] = 0.1 * 0.25881905; // m/sec^2 
 
    SRM_Vector_3D tank_geodetic_acceleration; 
 
    Geodetic_WGS84_SRF->transformVector( 
        *range1_ref_coord, 
        tank_range1_acceleration, 
        *geodetic_ref_coord, 
        tank_geodetic_acceleration); 
 
    // Tank angular acceleration vector with respect to Range 1 
    // (0.1 degree/sec left turn): 
    SRM_Vector_3D tank_range1_angular_acceleration; 
 
    tank_range1_angular_acceleration.array[0] = 
        -0.1 * degreesToRadians * 0.25; // radians/sec^2 
    tank_range1_angular_acceleration.array[1] = 
        -0.1 * degreesToRadians * 0.9330127; // radians/sec^2 
    tank_range1_angular_acceleration.array[2] = 
        -0.1 * degreesToRadians * 0.25881905; // radians/sec^2 
 
    SRM_Vector_3D tank_geodetic_angular_acceleration; 
 
    Geodetic_WGS84_SRF->transformVector( 
        *range1_ref_coord, 
        tank_range1_angular_acceleration, 
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        *geodetic_ref_coord, 
        tank_geodetic_angular_acceleration); 

7.4.4 Transform From Geodetic to Geocentric 
Example 4:  Transform the linear velocity, linear acceleration, angular velocity, and angular 
acceleration vectors of an aircraft expressed with respect to the Geodetic WGS 1984 SRF to the 
Geocentric WGS 1984 SRF. 
 
1) Create the SRF object for the Geodetic WGS 1984 SRF (see Section 4.1.1). 
2) Create the SRF object for the Geocentric WGS 1984 SRF (see Section 4.1.2). 
3) Transform the vectors from the Geodetic WGS 1984 SRF to the Geocentric WGS 1984 SRF 

using the transformVector method of the Geocentric WGS 1984 SRF object.  Note that the 
entity state vectors for the Geodetic WGS 1984 SRF are specified in terms of the local 
tangent framedefined by the reference coordinate at the current position of the aircraft.  This 
requires a reference coordinate for each of the two SRFs.  In this case, because the Geodetic 
WGS 1984 SRF is a curvilinear SRF, an appropriate and relevant location should be chosen 
as the geodetic reference coordinate.  Suppose the Geodetic WGS 1984 coordinate of the 
aircraft is chosen.  This defines a local tangent frame with its origin located at the current 
position of the aircraft.  Because the Geocentric WGS 1984 SRF is a linear SRF, any 
convenient location can be chosen as the geocentric reference coordinate.  Suppose the 
geocentric origin is chosen as the geocentric reference coordinate. 

 
    // From Geodetic to Geocentric 
    SRM_Long_Float aircraft_longitude = -120.5 * degreesToRadians, 
        aircraft_latitude = 33.5 * degreesToRadians, 
        aircraft_ellipsoidal_height = 5000.0; // meters 
 
    Coord3D* geodetic_ref_coord = Geodetic_WGS84_SRF->createCoordinate3D( 
        aircraft_longitude, 
        aircraft_latitude, 
        aircraft_ellipsoidal_height); 
 
    Coord3D* geocentric_ref_coord = Geocentric_WGS84_SRF->createCoordinate3D( 
        0.0, 0.0, 0.0); 
 
    // Aircraft linear velocity vector with respect to Geodetic WGS84 SRF 
    // (200 m/sec northeast): 
    SRM_Vector_3D aircraft_geodetic_velocity; 
 
    aircraft_geodetic_velocity.array[0] = 200.0 * 0.70710678; // m/sec 
    aircraft_geodetic_velocity.array[1] = 200.0 * 0.70710678; // m/sec 
    aircraft_geodetic_velocity.array[2] = 200.0 * 0.0; // m/sec 
 
    SRM_Vector_3D aircraft_geocentric_velocity; 
 
    Geocentric_WGS84_SRF->transformVector( 
        *geodetic_ref_coord, 
        aircraft_geodetic_velocity, 
        *geocentric_ref_coord, 
        aircraft_geocentric_velocity); 
 
    // Aircraft angular velocity vector with respect to Geodetic WGS84 SRF 
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    // (1 degree/sec right turn): 
    SRM_Vector_3D aircraft_geodetic_angular_velocity; 
 
    aircraft_geodetic_angular_velocity.array[0] = 
        -1.0 * degreesToRadians * 0.0; // radians/sec 
    aircraft_geodetic_angular_velocity.array[1] = 
        -1.0 * degreesToRadians * 0.0; // radians/sec 
    aircraft_geodetic_angular_velocity.array[2] = 
        -1.0 * degreesToRadians * 1.0; // radians/sec 
 
    SRM_Vector_3D aircraft_geocentric_angular_velocity; 
 
    Geocentric_WGS84_SRF->transformVector( 
        *geodetic_ref_coord, 
        aircraft_geodetic_angular_velocity, 
        *geocentric_ref_coord, 
        aircraft_geocentric_angular_velocity); 
 
    // Aircraft linear acceleration vector with respect to Geodetic WGS84 SRF 
    // (10 m/sec**2 ahead): 
    SRM_Vector_3D aircraft_geodetic_acceleration; 
 
    aircraft_geodetic_acceleration.array[0] = 10.0 * 0.70710678; // m/sec^2 
    aircraft_geodetic_acceleration.array[1] = 10.0 * 0.70710678; // m/sec^2 
    aircraft_geodetic_acceleration.array[2] = 10.0 * 0.0; // m/sec^2 
 
    SRM_Vector_3D aircraft_geocentric_acceleration; 
 
    Geocentric_WGS84_SRF->transformVector( 
        *geodetic_ref_coord, 
        aircraft_geodetic_acceleration, 
        *geocentric_ref_coord, 
        aircraft_geocentric_acceleration); 
 
    // Aircraft angular acceleration vector with respect to Geodetic WGS84 
    //  SRF (1 degree/sec**2 right turn): 
    SRM_Vector_3D aircraft_geodetic_angular_acceleration; 
 
    aircraft_geodetic_angular_acceleration.array[0] = 
        -1.0 * degreesToRadians * 0.0; // radians/sec^2 
    aircraft_geodetic_angular_acceleration.array[1] = 
        -1.0 * degreesToRadians * 0.0; // radians/sec^2 
    aircraft_geodetic_angular_acceleration.array[2] = 
        -1.0 * degreesToRadians * 1.0; // radians/sec^2 
 
    SRM_Vector_3D aircraft_geocentric_angular_acceleration; 
 
    Geocentric_WGS84_SRF->transformVector( 
        *geodetic_ref_coord, 
        aircraft_geodetic_angular_acceleration, 
        *geocentric_ref_coord, 
        aircraft_geocentric_angular_acceleration); 

7.4.5 Transform From Aircraft Body Frame to Range 1 
Example 5:  Transform the linear velocity, linear acceleration, angular velocity, and angular 
acceleration vectors of an aircraft from the aircraft’s body frame to the Range 1 SRF.  It is 
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assumed that, at any given instant in time, the orientation of the aircraft body frame with respect 
to the Range 1 SRF, 1BodyToRangeΩ  , can be computed to sufficient accuracy using the information 
provided by the inertial systems on the aircraft.  The inertial systems provide aircraft orientation 
information in the form of a set of Tait-Bryan angles, i.e., roll, pitch, and yaw.  It is further 
assumed that the aircraft inertial systems have been calibrated to the Range 1 origin local North 
and local “up” directions. 
 
This example uses an alternative to the transformation procedure given in Section 7.3.  This 
alternative procedure does not require the source SRF, which is the aircraft’s body frame, to be 
explicitly defined. 
 
1) Create the orientation object for the aircraft body frame with respect to test Range 1 SRF (see 

Section 6.2). 
 
Given the assumptions above, this can be accomplished in three stages.  First, an orientation 
object is created that represents the orientation of the aircraft body frame with respect to the 
“calibration frame” of its inertial systems.  This is accomplished using the Tait-Bryan roll, pitch, 
and yaw angles reported by the inertial systems: 
 
    SRM_Tait_Bryan_Angles_Params aircraft_tait_bryan_params; 
 
    aircraft_tait_bryan_params.roll = 5.0 * degreesToRadians; 
    aircraft_tait_bryan_params.pitch = -5.0 * degreesToRadians; 
    aircraft_tait_bryan_params.yaw = 90.0 * degreesToRadians; 
 
    OrientationTaitBryanAngles orientation_body_to_calibration( 
        aircraft_tait_bryan_params); 
 
In the calibration frame, the aircraft x-axis points toward local North and the z-axis points toward 
local down, while the test Range 1 x-axis points toward local East and the z-axis points toward 
local up.  A second orientation object that represents the orientation of the calibration frame with 
respect to test Range 1 can therefore be created as follows: 
 
    // From Aircraft Body Frame to Range 1 
    SRM_Matrix_3x3 matrix_params_calibration_to_range1 = { 
        0.0, 1.0, 0.0, 
        1.0, 0.0, 0.0, 
        0.0, 0.0, -1.0}; 
 
    OrientationMatrix orientation_calibration_to_range1( 
        matrix_params_calibration_to_range1); 
 
These two orientation objects, representing orientation of the aircraft body frame with respect to 
the calibration frame, and the orientation of the calibration frame with respect to the Range 1 
SRF, can now be composed to form the orientation of the aircraft body frame with respect to the 
Range 1 SRF: 
 
    OrientationMatrix orientation_body_to_range1 = 
        OrientationMatrix::compose(orientation_calibration_to_range1, 
            orientation_body_to_calibration); 
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2) Transform the vectors from the aircraft’s body frame to the Range 1 SRF using the 
transformVector method of the orientation object resulting from step 2 above.  This 
method transforms a vector quantity from the source SRF of the orientation object (i.e., the 
aircraft’s body frame) to its target SRF (i.e., the Range 1 SRF).  Note that because this 
orientation object captures the relationship between the aircraft body frame and the Range 1 
SRF, the actual SRF objects are not needed to perform this transformation. 

 
    // Aircraft body velocity vector (100 m/sec ahead): 
    SRM_Vector_3D aircraft_body_velocity; 
 
    aircraft_body_velocity.array[0] = 100.0; // m/sec 
    aircraft_body_velocity.array[1] = 0.0; // m/sec 
    aircraft_body_velocity.array[2] = 0.0; // m/sec 
 
    SRM_Vector_3D aircraft_range1_velocity = 
        orientation_body_to_range1.transformVector( 
            aircraft_body_velocity); 
 
    // Aircraft body angular velocity vector 
    // (2 degrees/sec clockwise roll): 
    SRM_Vector_3D aircraft_body_angular_velocity; 
 
    aircraft_body_angular_velocity.array[0] = 
        2.0 * degreesToRadians * 1.0; // radians/sec 
    aircraft_body_angular_velocity.array[1] = 
        2.0 * degreesToRadians * 0.0; // radians/sec 
    aircraft_body_angular_velocity.array[2] = 
        2.0 * degreesToRadians * 0.0; // radians/sec 
 
    SRM_Vector_3D aircraft_range1_angular_velocity = 
        orientation_body_to_range1.transformVector( 
            aircraft_body_angular_velocity); 
 
    // Aircraft body acceleration vector 
    // (5 m/sec ahead; 1 m/sec upward): 
    SRM_Vector_3D aircraft_body_acceleration; 
 
    aircraft_body_acceleration.array[0] = 5.0; // m/sec^2 
    aircraft_body_acceleration.array[1] = 0.0; // m/sec^2 
    aircraft_body_acceleration.array[2] = -1.0; // m/sec^2 
 
    SRM_Vector_3D aircraft_range1_acceleration = 
        orientation_body_to_range1.transformVector( 
            aircraft_body_acceleration); 
 
    // Aircraft body angular acceleration vector 
    // (+0.1 degrees/sec**2 clockwise roll): 
    SRM_Vector_3D aircraft_body_angular_acceleration; 
 
    aircraft_body_angular_acceleration.array[0] = 
        0.1 * degreesToRadians * 1.0; // radians/sec^2 
    aircraft_body_angular_acceleration.array[1] = 
        0.1 * degreesToRadians * 0.0; // radians/sec^2 
    aircraft_body_angular_acceleration.array[2] = 
        0.1 * degreesToRadians * 0.0; // radians/sec^2 
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    SRM_Vector_3D aircraft_range1_angular_acceleration = 
        orientation_body_to_range1.transformVector( 
            aircraft_body_angular_acceleration); 

7.4.6 Transform From Aircraft Body Frame to Range 2 
Example 6:  Transform the linear velocity, linear acceleration, angular velocity, and angular 
acceleration vectors of the aircraft in the previous example from the aircraft’s body frame to the 
Range 2 SRF.  The inertial systems on the aircraft were calibrated with respect to local North and 
up at the Range 1 origin.  These directions differ from local North and up at the Range 2 origin.  
The orientation 1BodyToRangeΩ  computed in the previous example can be used in this case to directly 
transform vector quantities in the aircraft body frame to the Range 2 SRF using the 
transformVectorInBodyFrame method. 
 
1) Create the SRF object for the Range 1 SRF (see Section 4.2.1). 
2) Compute the orientation object for the aircraft body frame with respect to the Range 1 SRF 
(see example 5). 
3) Create the SRF object for the Range 2 SRF (see Section 4.2.1). 
4) Transform the vectors from the aircraft's body frame to the Range 2 SRF using the 
transformVectorInBodyFrame method of the Range 2 SRF object.  This method uses the 
orientation of the aircraft body frame with respect to the Range 1 SRF as a parameter.  This 
method also requires a reference coordinate for each of the two Range SRFs.  Because the Range 
SRFs are both linear, any convenient locations can be chosen as the reference coordinates.  
Suppose the origins of the Range 1 and Range 2 SRFs, respectively, are chosen. 
 
    // From Aircraft Body Frame to Range 2 
    Coord3D* range1_ref_coord = Range1_SRF->createCoordinate3D( 
        0.0, 0.0, 0.0); 
 
    Coord3D* range2_ref_coord = Range2_SRF->createCoordinate3D( 
        0.0, 0.0, 0.0); 
 
    SRM_Tait_Bryan_Angles_Params aircraft_tait_bryan_params; 
 
    aircraft_tait_bryan_params.roll = 5.0 * degreesToRadians; 
    aircraft_tait_bryan_params.pitch = -5.0 * degreesToRadians; 
    aircraft_tait_bryan_params.yaw = 90.0 * degreesToRadians; 
 
    OrientationTaitBryanAngles orientation_body_to_calibration( 
        aircraft_tait_bryan_params); 
 
    SRM_Matrix_3x3 matrix_params_calibration_to_range1 = { 
        0.0, 1.0, 0.0, 
        1.0, 0.0, 0.0, 
        0.0, 0.0, -1.0}; 
 
    OrientationMatrix orientation_calibration_to_range1( 
        matrix_params_calibration_to_range1); 
 
    OrientationMatrix orientation_body_to_range1 = 
        OrientationMatrix::compose(orientation_calibration_to_range1, 
            orientation_body_to_calibration); 
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    // Aircraft body vector quantities, with values as in Example 5 
 
    // Aircraft body velocity vector (100 m/sec ahead): 
    SRM_Vector_3D aircraft_body_velocity; 
 
    aircraft_body_velocity.array[0] = 100.0; // m/sec 
    aircraft_body_velocity.array[1] = 0.0; // m/sec 
    aircraft_body_velocity.array[2] = 0.0; // m/sec 
 
    // Aircraft body angular velocity vector 
    // (2 degrees/sec clockwise roll): 
    SRM_Vector_3D aircraft_body_angular_velocity; 
 
    aircraft_body_angular_velocity.array[0] = 
        2.0 * degreesToRadians * 1.0; // radians/sec 
    aircraft_body_angular_velocity.array[1] = 
        2.0 * degreesToRadians * 0.0; // radians/sec 
    aircraft_body_angular_velocity.array[2] = 
        2.0 * degreesToRadians * 0.0; // radians/sec 
 
    // Aircraft body acceleration vector 
    // (5 m/sec ahead; 1 m/sec upward): 
    SRM_Vector_3D aircraft_body_acceleration; 
 
    aircraft_body_acceleration.array[0] = 5.0; // m/sec^2 
    aircraft_body_acceleration.array[1] = 0.0; // m/sec^2 
    aircraft_body_acceleration.array[2] = -1.0; // m/sec^2 
 
    // Aircraft body angular acceleration vector 
    // (+0.1 degrees/sec**2 clockwise roll): 
    SRM_Vector_3D aircraft_body_angular_acceleration; 
 
    aircraft_body_angular_acceleration.array[0] = 
        0.1 * degreesToRadians * 1.0; // radians/sec^2 
    aircraft_body_angular_acceleration.array[1] = 
        0.1 * degreesToRadians * 0.0; // radians/sec^2 
    aircraft_body_angular_acceleration.array[2] = 
        0.1 * degreesToRadians * 0.0; // radians/sec^2 
 
    SRM_Vector_3D aircraft_range2_velocity; 
 
    Range2_SRF->transformVectorInBodyFrame( 
        *range1_ref_coord, 
        orientation_body_to_range1, 
        aircraft_body_velocity, 
        *range2_ref_coord, 
        aircraft_range2_velocity); 
 
    SRM_Vector_3D aircraft_range2_angular_velocity; 
 
    Range2_SRF->transformVectorInBodyFrame( 
        *range1_ref_coord, 
        orientation_body_to_range1, 
        aircraft_body_angular_velocity, 
        *range2_ref_coord, 
        aircraft_range2_angular_velocity); 
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    SRM_Vector_3D aircraft_range2_acceleration; 
 
    Range2_SRF->transformVectorInBodyFrame( 
        *range1_ref_coord, 
        orientation_body_to_range1, 
        aircraft_body_acceleration, 
        *range2_ref_coord, 
        aircraft_range2_acceleration); 
 
    SRM_Vector_3D aircraft_range2_angular_acceleration; 
 
    Range2_SRF->transformVectorInBodyFrame( 
        *range1_ref_coord, 
        orientation_body_to_range1, 
        aircraft_body_angular_acceleration, 
        *range2_ref_coord, 
        aircraft_range2_angular_acceleration); 
 
To transform vector quantities from the aircraft body frame to Geocentric, substitute 
Geocentric_WGS84_SRF for Range2_SRF in this example. 
 
An alternate method to realize example 6 is to transform the orientation 1BodyToRangeΩ  to be with 
respect to Range 2 and then use the methods of example 5.  In particular, 2BodyToRangeΩ  may be 
computed with: 
 
    Orientation* orientation_body_to_range2 = new OrientationMatrix (); 
    Range2_SRF->transformOrientation ( 

*range1_ref_coord,  
*orientation_body_to_range1,  
*range2_ref_coord, 
*orientation_body_to_range2); 

 


