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I  INTRODUCTION  

1.1 Background 
This report contains guidelines for the development of computationally efficient algorithms for 
computing spatial operations. A spatial operation is a coordinate transformation, a coordinate 
conversion, an azimuth determination, a distance calculation or other computations associated 
with elliptical trigonometry and map projections. These guidelines have evolved as the result of 
several projects that have emphasized efficient processing. One of these was the SEDRIS 
program, covering the period 1996 to the present [SEDR]. The SEDRIS program involves 
standardized representations of environmental data for Live, Virtual and Constructive (LVC) 
simulations.  

LVC simulations must execute in near real time or faster. The archived environmental data is 
saved in very large files in a multitude of spatial reference frames (coordinate systems and Earth 
reference models). Such data must be converted to spatial reference frames consistent with the 
simulation nodes of a distributed federation. Changes to the simulation scenario require rapid 
turnaround of these conversions. Conversion from one spatial reference frame to another also 
must be done efficiently when developing or receiving protocols in a distributed federation. 
Spatial operation computations are also required internal to a simulation node or in embedded 
systems for geometry modeling and dynamics. As a consequence of such applications, a 
premium is placed on processing efficiency, while at the same time, maintaining challenging 
accuracy requirements.  

A number of ISO/IEC International Standards have been developed as part of the SEDRIS 
program. In addition, software has been implemented for computing spatial operations that 
conform to these standards [SEDR]. This software is open and freely available to users from at 
the SEDRIS web site [SEDR]. For the SEDRIS program, the authors have focused on the 
development of a Spatial Reference Model (SRM), algorithms for the efficient computation of 
spatial operations and code for use in the SEDRIS implementation.  

The SRM has evolved over the life of the program into an ISO/IEC International Standard, 
which is currently at the Final Draft International Standard (FDIS) state [18026]. One of the 
authors of this report has served as a co-editor for ISO/IEC 18026. The FDIS was released to the 
international community for ballot in January of 2006. The SEDRIS implementation conforms to 
several ISO/IEC Standards developed for the SEDRIS program. In particular, the 
implementation meets the computational accuracy requirement, in position, of 1mm for the 
computation of a set of spatial operations as specified in the conformance clause of ISO/IEC 
18026 (FDIS). There is no performance requirement specified in ISO/IEC 18026. However, for 
the reasons stated above a premium is placed on processing efficiency, while at the same time, 
maintaining the challenging accuracy requirements of ISO/IEC 18026. 

One of the goals of the SEDRIS program has been to educate users in the complexities of spatial 
referencing across numerous spatial reference frameworks associated with real and conceptual 
objects occurring in the solar system. Special emphasis is given to near Earth applications 
associated with various Earth reference models and geodesy. A principal media for the 
educational process has been in the form of tutorials given at annual SEDRIS Technology 
Conferences [SEDR]. A popular part of the SRM tutorial has been the development of guidelines 
for the design of efficient algorithms for spatial operations. As part of an SRI sponsored Internal 
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Research and Development program, the guidelines developed for the tutorial have been revised 
and enhanced with time. A version of the guidelines was incorporated into ISO/IEC 18026 FDIS 
as a major part of a non-normative annex (Annex B. Implementation Notes). 

This report provides an enhanced and up to-date-version of the guidelines. Use of these 
guidelines is not restricted, but it should be understood that the utility of these guidelines is 
application dependent.  Selection of the appropriate design approach is the developer’s 
responsibility. The authors welcome comments and suggestions for improvement that can be 
used for future enhancements of this report. 

1.2 Finite precision 
It is generally not possible to exactly implement theoretical formulations on a digital computer 
due to limitations in representing real numbers on a finite word length computer. If x is a real 
number, its representation on a digital computer can be viewed as xc. The difference between x 
and xc is called digitization error. There are some real numbers that can be exactly represented 
but generally the digital representation is only good to a prescribed number of bits depending on 
the precision of the floating-point representation of the computer system used. Implementation of 
spatial operations can involve relatively large numbers. Differences of numbers with large 
absolute values can occur along with products of relatively small numbers with large numbers. 
Loss of significance can occur due to these conditions. Using single precision arithmetic for 
spatial operation computations associated with the Earth may lead to a loss of precision on the 
order of half a meter, even when the application is for the near Earth region. To mitigate loss of 
precision it is advisable to employ double-precision arithmetic for floating-point operations 
[IEEE-754]. Through the use of double precision arithmetic it is assumed that the digitization 
error is so small that it can be ignored in the following discussions. 

1.3 Computational efficiency 
In many application domains computational efficiency is very important. Some examples of such 
applications include: embedded systems with real time control feed-back, the processing of many 
very large environmental data files, real time graphics display of geographic data and large scale 
simulations involving hundreds of thousands of interacting objects. Historically, computational 
assets were much less capable than those currently available. As a result, much research over the 
last century has been devoted to reducing computational complexity for the type of spatial 
operations addressed in this report. Many of the techniques currently used were developed for 
hand computation or in the context of more rudimentary computational systems. Implementers 
have been slow to adapt to the capabilities provided by computational systems that currently 
exist. Concomitant with the increased computational capabilities, there have been significant 
technical advances in the field of computational mathematics. New methods have emerged along 
with better strategies for exploiting the current computational capabilities. These advances in 
computational mathematics have generally not been exploited for the types of spatial operations 
addressed in this report. 

As noted, a spatial operation computation is a coordinate transformation, a coordinate 
conversion, an azimuth determination, a distance calculation or other computations associated 
with elliptical trigonometry and map projections. Distance may be Euclidean or on the Earth 
reference surface (geodesics). Over the years, a large number of computational algorithms have 
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been developed for a wide range of applications. Many of these are not appropriate for efficient 
processing using current computer system environments circa the year 2000 and beyond.  

If a target application does not require efficient processing, any accurate algorithm for computing 
spatial operations may be employed. The purpose of this report is to develop a set of guidelines 
or advisories that will support a developer in the design of efficient algorithms that maintain a 
specified accuracy when overall throughput is important. While the target environment is 
generally a computer system with a superscalar architecture, many of these advisories are 
applicable to legacy computer systems and specialized systems used for embedded processing. 

1.4 Error 
Historically, measurement errors for locations on the Earth have been so large that sometimes 
little attention has been given to approximation errors made in procedures for computing spatial 
operations. These errors are present because the mathematical formulation involves a series or an 
iterative process that has been terminated at some finite number of computations. Computational 
error also includes the deliberate replacement of some functions by approximations that are 
employed for the purpose of increasing efficiency. Computational error, as used here, does not 
include measurement or implementation errors. With the increasingly accurate measurement 
systems now available it has become important to develop procedures with very small 
computational errors. At the same time it is important for many applications that such procedures 
be efficient. 

2.0 GUIDELINES 

2.1 The Computational Environment: 
It is important to consider the properties of the current computational environment. In the last 
two decades an astonishing improvement in computational capabilities has occurred. Yet, in 
some application domains, algorithms that were developed for hand calculation are still being 
implemented. In addition, many traditional computational methods developed for legacy 
computers are inappropriate for the new environment but continue to be used.  

The principal characteristics of the new machine environments include: 

1. A surfeit of low cost Dynamic Random Access Memory (DRAM), 

2. the development of very high-speed cache memory that permits the dynamic allocation of 
blocks of critical data to the cache memory.  Several levels of cache memory, often 
denoted L1, L2, ... exist and afford differing access speed. 

3. superscalar architectures that permit pipelined (parallel) processing, 

4. integrated chips that permit very high speed processing for some critical mathematical 
functions  (e. g. some transcendental functions and square root), 

5. the development of compilers that exploit the advantages of super scalar architectures, 

6. the development of optimizing operating systems that re-order computations and memory 
accesses in real time to maximize throughput. 
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Generally such machines are designed to nominally operate in IEEE double precision in which 
the mantissa is 52 bits. This is equivalent to 15 plus decimal digits of accuracy. This level of 
precision is generally adequate for Earth-specific applications. 

An example of the impact of the new computing environment is the computation of 
trigonometric functions. In the legacy environment, trigonometric functions were evaluated as 
system-level subroutines written in software. Such routines were very slow, sometimes taking 
between 30 and 45 floating point operations to complete. To meet system timeline specifications, 
software developers often replaced trigonometric subroutine calls by in-line procedures that used 
piecewise linear or quadratic trigonometric calculations (colloquially called “table lookup”). This 
required a considerable portion of the relatively small memory available in legacy computers. 
Because memory was scarce at the time, this technique could only be used sparingly. Accuracy 
was often degraded so that the array of fitting coefficients did not get too large. 

In the new environment, the trigonometric functions are computed in special processor units 
using high-speed memory and parallel processing. As a result, these functions produce double 
precision results that are very fast relative to the basic operating speed of the computer. Circa 
2006, a rule of thumb is that a double precision multiplication typically takes 1 processor cycle, a 
double precision divide takes about 32 cycles, a double precision square root about 40 cycles and 
a double precision sine 100 -200 processor cycles depending on the argument.  Development of a 
faster approximation seems reasonable until one realizes it can take between 2 and 200 processor 
cycles to retrieve each coefficient from memory.  One popular software mathematics library 
initializes over 20 variables when a sine call is made and can perform over 50 double precision 
multiplication operations per call. On computers with effective hardware implementation of  
transcendentals, implementing a general in-line sine sub-routine (by table look up) can be slower 
than calling the system sine function. This can happen because the access time required to fetch 
the appropriate fitting coefficients from DRAM may take longer than the entire system routine 
computation.  

The previous paragraph advises against attempting to develop in-line code for general-purpose 
calculation of standard mathematical routines. However, this advisory does not apply to 
compound functions or mathematical functions that are not implemented in special processor 
units. For example, it may be more efficient to evaluate sin f x( )( ) in-line using an approximation 
rather than computing f(x) and then calling the sine function. The efficacy of the in-line approach 
in such a case depends on the complexity of f(x) and tends to favor the in-line approximation 
approach when more than two transcendental functions are composed. 

2.2 Domain Of Applicability  
The domain of applicability should be defined before developing or selecting a procedure. Many 
authors waste development time and processing time by forcing their methods to work in non-
practical regions such as near the center of the Earth reference model or at ellipsoidal heights of 
100 million kilometers from the surface. The number of applications for such regions is so small 
that any interest in these regions is primarily academic 

For Earth-referenced applications there are several regions of practical interest. For aircraft, an 
appropriate region in terms of ellipsoidal height is –200 meters to 35,000 meters for all latitudes 
and longitudes. This covers the region where air-breathing assets can operate. For sub-surface 
operations an appropriate region is –12,000 meters to +200 meters for all latitudes and 
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longitudes. This region covers the lowest bathymetric point of the Earth (Marianas Trench) to 
slightly above the ocean’s surface. It is convenient to combine the two regions and to call this 
composite region the near-Earth region. Of course, space operations may require a region 
extending above 35 kilometers to beyond the orbit of the moon. This region will be called the 
space operations region. All regions may be further divided into sub-regions for particular 
applications in order to simplify formulations or for computational efficiency. Usually the 
latitude domain is [-π/2, π/2] and the longitude domain is  (-π, π].  Often a particular application 
may be restricted to a smaller latitude/longitude region to simplify formulations and in the case 
of map projections, to reduce distortions.  

2.3 Defining a Meaningful Measure of Computational Error  
In many situations involving spatial operation computations, the resulting variables are not exact, 
due to approximations made in their computational formulations. An error measure is needed to 
determine the approximation error. If the target variables are in terms of distance in some 
Euclidean coordinate system then a Euclidean norm can be used to measure the approximation 
error. Such an error measure is called position error. Some authors use the maximum error in the 
absolute value of the difference between the true values and the approximate values of each 
component (just another mathematical norm).  

Some authors have also used the average of the absolute value of the differences of each 
component of position error as an error measure. This practice makes the approximation errors 
appear to be much smaller than the maximum errors, and depends on where the samples for the 
average are collected. This approach is misleading and should not be used. 

Sometimes the target variables contain angular errors along with distance errors. In this case the 
angular error should be converted to distance so that a Euclidean error measure can be applied. 

2.4 Avoiding Excessive Accuracy  
The literature is replete with algorithms that are excessively accurate. One journal paper on 
geocentric to geodetic coordinate conversion develops a procedure whose approximation error is 
10-20 meters, surely an accuracy far exceeding any practical use. Many iterative procedures can 
achieve such accuracies provided that a computational environment is available with sufficiently 
high precision arithmetic. However, it is important not to waste computer cycles to attain 
superfluous accuracy. A method, A, with maximum error 10-8 meters is some times declared 
superior to a method, B, which has a maximal error of 10-6 meters. If method A takes more 
processing time than B it is not superior. In fact it is quite likely that both methods are too 
accurate. For example, suppose there is a method C with maximum error less than 10-4 meters 
(tenth of a mm) but takes less computer time than A or B. Then method C would likely be 
preferable for most (if not all) applications. 

2.5 Determining the Acceptable Error Before Starting 
The maximum allowable position error should be determined before starting an algorithm 
development. The SEDRIS program has a goal of keeping the computational error (position 
error) to less than 1 mm for all procedures involving spatial operations [SEDR]. Note that if the 
position error is less than 0.9mm then 0.9mm = .0009m = .02286in <<0.03125in=1/32in which, 
from a practical point of view, is very small. When position error is small its component errors 
also very small. When a position error criterion is used, the nominal position error is usually 
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much smaller than the maximum error, i. e. much less than 1 mm. It is difficult to conceive of an 
application domain that requires, or would find useful, errors smaller than this for spatial 
operations. This is particularly the case if scarce computational resources are used in order to 
achieve superfluous accuracy. 

2.6 Mathematical Approaches 
 Mathematical formulations for solving spatial operation computational problems can be 
relatively complex. The complexity is driven by the fact that Earth reference models are usually 
oblate ellipsoids. This results in formulations in which the principal equations involved are non-
linear and often not solvable in closed form. For most formulations it is also necessary to have an 
inverse spatial operation. Many spatial operation formulations have closed form solutions in one 
direction but do not have closed form solutions for the inverse. This situation leads to a 
requirement to solve non-linear equations in more than one dimension where no closed solution 
is available.  

Traditionally, either power series or iterative solutions have been used for solving inverse spatial 
operation problems. The choice of which approach to use depends on the problem, the skill of 
the algorithm designer and the skill of the software developer. Note that both of these methods 
have an interesting property that is often not recognized.  Almost all publications and subsequent 
implementations of finite power series solutions use all the terms in the series no matter how 
close the independent variables are to the expansion point. In fact, when the independent 
variables are close to the expansion point only a few terms are needed and the effect of higher 
order terms is nil. It is often easy to develop simple tests on the independent variables to 
determine how many terms to use in a particular formulation. A similar situation exists in 
determining how many iterations to use in an iterative approach. Almost all publications on 
iterative methods suggest iterating until the difference between successive iterates is sufficiently 
small. This is not a good policy when efficiency is important. Legacy software implementations 
always seem to use the maximum number of terms or iterations no matter what. This is generally 
a huge waste in computation time. 

It is advisable, if not mandatory, to perform an error analysis to determine the maximum error in 
an algorithm over an applicable domain. This permits the a priori determination of how many 
terms in a series are needed to achieve a specified accuracy and the corresponding region(s) 
surrounding the expansion point where this happens. This will save calculation of terms in 
regions where the number of terms is so small as to not affect the results.  

Similarly, the maximum number of iterations required for an iterative scheme can be determined 
along with the region(s) where further iterations do not affect the results. This will save at least 
one iteration (often more than one) and eliminates the need for in line comparison testing. 

Another approach for solving multivariable non-linear equations exists that is much more 
appropriate to the new computational environment. This is the use of curve fitting or 
approximation of a function or the inverse of a function. In one dimension this amounts to 
piecewise approximation or “table look up”.  The penalty, associated with this approach, is that it 
takes additional memory to store the coefficients of the piecewise defined functions to achieve 
usable accuracy. This penalty has been virtually eliminated by the availability of large capacity 
low cost DRAM. The trend in computational mathematics is to use low order local 
approximations for efficiency.  
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The choice of a method to employ is dependent on the application and in particular on the 
computer system being used. 

2.6 Good Programming and Formulation Practices 
Good programmers usually employ good programming practices. They move the computation of 
global constants out of loops to start up procedures, move locally computed constants to the 
highest possible level, nest polynomials, avoid using power functions and leverage many other 
good practices. Unfortunately, some colleges and universities now teach that these practices are 
not important because modern computers are so fast that they are not needed. Or it is taught that 
optimizing compilers will invoke such good practices automatically. In complex codes it may not 
be easy or possible for a compiler to clean up poor practices. It is advisable to always use good 
programming practices in situations where throughput is important as many popular compilers 
with excellent integer optimization have virtually no capacity for floating point optimization. In 
some rudimentary systems, there may be neither a compiler nor a higher order language. 

In many cases the formulation coded is the published form of the mathematical formulation. 
Often the author of the formulation is not familiar with computational mathematics or has chosen 
a mathematical formulation for publication that is unambiguous and convenient. Often the 
efficiency of the formulation can be greatly improved by eliminating redundant transcendental 
functions. For example, trigonometric functions can sometimes be eliminated or simplified 
through the use of identities or often just simple observations. 

One simple example is a test like x ≤ c used as a branch point test. If c is a constant this can be 
re-written in the equivalent form,  which does not require a square root. This observation 
generalizes to branch tests like 

x ≤ c2

f x( )≤ c  which become x ≤ f −1 c( ) in cases where this makes 
mathematical sense. If c is a constant, the right hand side is now a constant and can be computed 
at start up. Sometimes c is a variable but is easier to compute than f. f −1

More complex examples of use of the publication form of a formulation have led to publications 
whose conclusions about convergence rate and processing time requirements are wrong. A 
classic example is in the conversion of geocentric coordinates to geodetic coordinates using 
Bowring’s method. If the algorithm is formulated as published, it appears that several 
intermediate trigonometric function evaluations are needed for each iteration. In fact, only a 
square root is needed for each iterate [FUKA], [TOMS]. Fukashima has coined an appropriate 
term for the implementation of the published form of Bowring’s method. He calls this a naïve 
implementation. This appellation can be applied to many spatial operation formulations where 
the direct implementation of the published form of the formulation is often naïve.   

2.7 Design For Context 
Spatial operation computations are usually not performed in isolation, but are often used as part 
of a sequence of operation computations. For example, a point in geocentric coordinates is 
converted to geodetic coordinates and this is immediately followed by a conversion to a map 
projection. Such a sequence is sometimes referred to as a chain of operations. By anticipating a 
chain, some of the early calculations may be saved for use later in the chain.  

For example, when the projection in the above chain is Transverse Mercator, the curvature in the 
prime vertical, the sine of latitude and the cosine of latitude will be needed to support the 
conversion. These values are computed as part of the first conversion from geocentric to geodetic 
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coordinates, and should be saved for use in the ensuing conversion to Transverse Mercator. 
Similar chains occur in simulations and embedded systems. When simulating dynamics models, 
the values of latitude and longitude are often not needed at all (only the trigonometric functions 
of these are used).  

Efficiency gains from treating a spatial operation computation as a chain may depend on the 
individual procedures used. For example, some procedures for converting geocentric coordinates 
to geodetic coordinates do not compute the trigonometric values and only supply angular values 
for latitude and longitude. If the trigonometric functions of these are later needed, they have to be 
computed by calling at least a cosine function followed by a square root (or a sine function call). 
When selecting algorithms, preference should be given to those approaches that are useful for 
efficient chaining. For example, in the non-naïve implementation of Bowring’s method, the sine 
and cosine of latitude can be computed from basic principles as part of the process [FUKA], 
[TOMS]. No trigonometric functions are needed. As a consequence, the sine and cosine of 
latitude should be saved for later use. 

2.8 Software Verification and Computational Error Testing 
Verification testing involves determining if an implementation properly reflects the mathematical 
formulation of the problem. Computational error evaluation is the determination of position error 
(or another appropriate error measure) over the predetermined region of interest. Much of 
verification testing is done by inspection. Rapid changes in computational error or unexpected 
results on some subset of the area of interest often indicate a formulation or coding error.  

As a result, verification testing should be aided by computational error testing whereby the 
results of the developed software are tested against properly vetted results from the literature.   
Computational error testing is generally resource intensive because it involves archiving and 
utilizing a wide range of test data sets with their pedigrees while each case and result are tracked 
individually.  Such testing is hampered by the fact that there are frequent errors in published 
results and caution must be used when selecting test data.  It is wise to assume at the beginning 
of an algorithm development project that any line of code that was not executed during 
computational error testing may contain one or more software defects.  

Computational error testing often uses results obtained from external sources, usually from 
authoritative agencies. In fact it is always helpful to compare results to other codes developed for 
spatial operation testing.  Unfortunately, such authoritative data may be sparse or may not cover 
the full range of the area of interest. Fortunately, many spatial operation formulations have 
closed form solutions in at least in one direction.  Even though closed form solutions may not be 
very efficient and approximation algorithms may be needed to provide high-speed solutions, 
closed form solutions are very useful for constructing reliable data sets for testing. 

In most cases it is very difficult to exactly determine the maximum absolute computation error. 
In some cases, mathematical analysis can provide analytic bounds to the error [KENI]. However, 
these may not relate well to what is actually implemented and the vagaries of computation with a 
finite word length. In the end, the error analysis must be accomplished with respect to the 
procedures as implemented in software. 

It is important to test an algorithm on a very large set of points uniformly distributed over the 
region of interest. This is commonly referred to as dense testing. The set of test points 
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themselves should be automatically generated over a region or sub-region of interest. A 
convenient way to do this is to set up a lattice of reference points. Such a lattice can be in one or 
more dimensions and is often referred to as a gridded data set. A procedure is developed to test 
an implemented algorithm at each grid point. This procedure records the absolute error at each 
point and the maximum of all these errors is computed for the whole grid. As the grid size is 
made smaller the maximum error should converge to a fixed value. This fixed value will closely 
approximate the maximum error over the region of interest.  

As an example, consider the testing of the conversion of geocentric coordinates to geodetic 
coordinates for a region with ellipsoidal height bounds defined by  

0 ≤ λ ≤
π
2

, 0 ≤ φ ≤
π
2
 and hmin ≤ h ≤ hmax , where longitude is λ , latitude is φ , h is  

ellipsoidal height, and  are respectively the lower and upper bounds on the 

ellipsoidal heights of interest. A three dimensional lattice or grid can be formed on 

hmin  and hmax

0,
π
2

⎡
⎣⎢

⎤
⎦⎥
× 0,

π
2

⎡
⎣⎢

⎤
⎦⎥
× hmin ,hmax[ ] with equal spacing along each grid axis. The coordinate  

λ,φ,h( ) of each lattice point is exact by construction1. Each coordinate λ,φ,h( ) in geodetic 
coordinates can be exactly converted to the corresponding point x, y, z( ) in geocentric 
coordinates using well-known closed form formulas. Of course, “exact” here means to 
implement this process in double precision, that is, to more than 15 decimal digits. This process 
yields two test data sets that are exact by construction. One is a set of points in geodetic 
coordinates λ,φ,h( )

)

                                                

and the other is a corresponding set of points in geocentric coordinates 
. If an approximate coordinate conversion method is used in either direction on these 

exact sets it is pro forma to determine the error at each test point. The maximum error is then 
easy to compute on the test set. When the lattice spacing is made smaller on each axis the 
maximum error in the process and its location(s) can be estimated. If the error is excessively 
large at some test point, either the algorithm is defective or there is a coding error. 

x, y, z(

Certain points may represent points of singularity in a formulation. Values at the singularity are 
usually determined analytically. In computing values close to a singularity numerical sensitivities 
can occur. In the neighborhood of such a point dense testing should be performed to insure that 
proper results are obtained throughout the neighborhood. This is the dense testing on a sub-
region referred to in the previous paragraph. 

Occasionally a test is developed where a spatial operation is computed for a given point and this 
is followed by the computation of the inverse of the operation. This is referred to as round-trip 
testing and is recommended in some publications [HOOI]. Other publications warn of the 
dangers in round trip testing (see page 76 of [HDPT]).  In general, round trip testing cannot yield 
precise error values. Both round-off error and approximation error are generally present in each 
direction. These normally not symmetric and do not cancel each other. At best, round trip testing 

 
1 Points in geodetic coordinates have their components written in the order longitude, latitude 
and ellipsoidal height, λ,φ,h( ), in order to comply with ISO/IEC 18026 (FDIS). This ordering is 

a consequence of the use of right-handed coordinate systems [18026]. 
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is useful for rough order of magnitude testing and may expose some gross coding errors. Round 
trip testing cannot be counted upon to show that a routine has no software defects. 

 

Example 

This example is intended to illustrate one of the inadequacies of round trip testing. The SEDRIS 
implementation of the transverse Mercator (TM) map projection uses finite Taylor series 
representations for computing both the forward and inverse conversions. This formulation is used 
in this example.  
 
The formula for the Easting value, u, contains a multiplicative factor ko  called the scale factor. 
Suppose that the designer or implementer forgets to put this factor in the formulation and in the 
inverse formulation. Effectively, this means that the scale factor is always 1 in both the forward 
and inverse conversions. Suppose that a round trip test is used to try to verify the accuracy of the 
formulation. The developer, designer and tester are all unaware of error. 

 
The test point is on the equator at 3 degrees longitude. In SRM notation, in radians, this is the 
input point (0.0523598775598299 , 0.0). The forward conversion yields the approximate point 
ua=834112.201701349 and  va=0.0 m, This point is used to provide input to the inverse procedure 
to complete the round trip. The resulting approximate point in radians is  (0.0523598775451542, 
0.0) and in degrees (2.99999999915914, 0.0). The degrees representation is encouragingly close 
to 3 degrees, but is it good enough? To assess this question, the error is converted to an equivalent 
distance error. 

 
The angular longitude error is converted to an approximate position error by differential error 
analysis which uses the semi-major axis of the ellipsoid in the formula, error = a(true longitude-
approximate longitude).= a(0.0523598775598299-0.0523598775451542)= 
0.936037019286309D-04≤.00094 mm. As a result of this round trip test one might be tempted to 
conclude that the result is very accurate and meets a 1mm maximum position error criterion. This 
conclusion might be reached even though the conversion formulas have an unknown error in 
them.  

 
The exact value of u is known, that is u=833978.556918999995105. This value was 
supplied by Craig Rollins of the U.S. National GeoSpatial Intelligence Agency [ROLL].  
After the forward approximation, the approximate Easting value us can be directly 
compared with the true value to determine the error in the forward formulation. That is, 
the error=u- ua =(833978.556918999995105-834112.201701349) m = -
133.644782348536 m. This error is way outside the acceptable limit of 1mm. This means 
that using the exact results for the error analysis shows unequivocally that there is an 
error, either in the input or the formulation or the code. Using exact values for 
comparison may be the only way to be sure that something is wrong. 

 
Continuing the round trip process a large number of times for a fixed test point will generally 
lead to divergence of the results. This is to be expected due to the lack of symmetry of the errors 
in each direction. Repeated round trip tests like this are meaningless for validating an algorithm 
for a spatial operation.  

 

 
. 10



February 2006 

The lack of symmetry of the error between the computation of a spatial operation and its inverse 
can also cause difficulties when points are on or very near a validity boundary. For example, 
suppose that a geodetic point lies on a zone boundary for a UTM projection. When the point in 
UTM is computed a truncated power series is used. Due to the combination of truncation and 
round-off errors the resulting point may be in an adjacent zone. Applying the inverse spatial 
operation may not yield a point in the adjacent zone and not in the zone that it started in. This is 
due to the lack of symmetry of the forward and inverse errors. Application developers need to be 
aware of this type of problem. 

2.9 Performance Testing 
As the computational environment has evolved to its current state, performance testing has 
become increasingly difficult to conduct. The vast majority of legacy and current literature on 
algorithm development for spatial operation computing has relied on counts of both arithmetic 
operations and system level mathematical function calls to estimate performance. This policy 
generally ignores the system-to-system variation of the performance of arithmetic operation or 
mathematical functions. At best this policy is only valid for making relative comparisons for the 
same computational environment. Even then, operation counts are only reliable when the 
difference in operation counts is large. Obviously, if one method requires many more operations, 
transcendental functions and square roots than another, it probably will be slower than an 
alternative that requires less of these. However, determining a percent difference in performance 
with this approach is apt to be imprecise. 

Another common approach to performance testing consists of developing a simple program in 
which the algorithm is embedded in a loop. The loop execution time is determined by executing 
an empty loop a large number of times using a system level timing routine. The algorithm to be 
tested is then embedded in the loop and execution time is determined again. The time difference 
of the two processes is divided by the number of loop cycles and the result is used as an estimate 
of the execution time of the algorithm. This allows comparisons between alternative algorithms 
to be made on the same computer. Even on legacy systems some care must be taken with this 
technique. Sometimes the algorithm is very simple and if a compiler is used and has its 
optimizing level set to a high level, erroneous results can result. For example, if the procedure 
is , the compiler may recognize that the result is the same for every pass through the 
loop and move the computation outside the loop.  This will of course lead to erroneous results. 

y = sin x( )

Simple loop tests like the one discussed in the previous paragraph are likely to be unreliable for 
predicting performance when implemented on a machine with a superscalar architecture. An 
algorithm’s performance may be quite different when it is embedded in a large application 
program. One of the authors (Kellough) has coined some nomenclature to distinguish between 
such cases. The use of a simple loop test is called in vitro testing, while testing an algorithm 
embedded in a larger application program is called in vivo testing. [This is in analogy with in 
vitro testing in biological medicine where an experiment is generally small and controlled, such 
as being limited to a Petri dish and conducted within a controlled environment. In the biological 
medicine context, in vivo testing is done within its natural environment perhaps in a living body.] 

In vitro tests are much less reliable in the new computer environment because an operating 
system will be able to concentrate all of its capabilities on a relatively small code to make 
optimal use of cache memory and parallelism. The same algorithm, tested in vivo will have 
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competition from other processes for computational resources. When comparing the performance 
of two algorithm options even their relative performance may not be preserved when 
transitioning from in vitro to in vivo testing. Obviously, in vivo testing may not be possible in 
the early stages of a development program. The code in which the algorithm is to be embedded 
may not even exist until late in the program. This suggests that initial tests be done by inspection 
(operation counts), followed by in vitro testing, with the understanding that the results are not 
precise. When enough of the product software is available, re-testing in vivo is recommended. 

2.10 Spherical reference models 
All of the mathematical formulations for spatial operations with respect to spatial reference 
frames based on an oblate ellipsoid reference model will be valid when the eccentricity of the 
ellipsoid is set to zero. That is, they are valid for spherical reference models. However, the 
majority of spatial operations for the spherical case have formulations that are available in closed 
form. It may be more convenient for some application domains to use the closed-form solutions 
in this case. For efficiency purposes it may be important to approximate the exact formulations 
for the spherical cases. 

 2.11 Distortion considerations 
For map projections, distortion effects generally increase with distance from the origin. 
Distortions may become unacceptably large for a particular application domain. In this case the 
distortion error dominates the computational approximation error. As a consequence, it is not 
useful to develop algorithms that have minimal computation error in such regions. In practice an 
implementation may be designed to prevent processing the projection in this case or it may do so 
but issue a warning that distortions are large.  

2.12 Validity checking 
An implementation should verify that both input and output data for a spatial operation are in the 
proper domain and range. In some spatial operations the domain of the implementation may be 
restricted to avoid computations near singular points.  

When using even a convergent iterative routine, a computation near a pole may result in a 
latitude slightly exceeding |90| degrees. The developer needs to test for this case and set the 
result to +-90 degrees as appropriate. Another frequently encountered problem has to do with the 
computation of longitude for inverse cases. The result λ  (in radians) may lie outside the interval 
−π < λ ≤ π . Some publications are not very specific about this but what should be done is to add 
or subtract 2π  as appropriate. In Clause 5, Table 5.6 of ISO/IEC 18026 a longitude centering 
function is introduced for this purpose of the form 
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where λc is a specified origin or reference value [18026]. 
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